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Abstract

This dissertation is a collection of scientific articles discussing the topic of neural
networks suitable for image recognition in digital photographs. Since this topic is very broad
and general, this dissertation investigates explicitly the use of neural networks suitable for text
recognition, namely two historical alphabets - the Palmyrene alphabet, which was used to write
texts in the Palmyrene dialect of Aramaic, and the cuneiform script. Using the Palmyrene
alphabet as an example, a custom cascade pipeline is presented to build an OCR algorithm that
identifies individual characters using a segmentation neural network and evaluates which
character is the correct one using a custom optimal classifier or directly using multi-class
instance segmentation. The finished solution is presented in a mobile and web application.
GAN:-type neural networks were used to refine the results of the classifier using training on the
augmented dataset, and their features were investigated. On the other hand, cuneiform analysis
was performed using an object detection algorithm, where individual strokes in the image were
detected and redrawn onto a blank canvas using a custom utility. I believe that the contribution

of this dissertation is not only theoretical but also practical.

Keywords: Artificial Intelligence, Computer Vision, Object Detection, Convolutional Neural
Networks, Data Augmentation, Text Segmentation, Pattern Recognition
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1 Introduction

The presented text of the commented dissertation - a compilation of scientific articles -
consists of the theoretical basis and practical applications of Artificial Neural Networks used
for object segmentation, classification, and detection, as well as expanding datasets from
digital photographs. The main goal was to create a simplified, cascade-style approach, which
is meant to develop historical alphabet Optical Character Recognition (OCR) and utilise
multiple types of Convolutional Neural Networks. This novel cascade approach builds on
previous research in Convolutional Neural Networks, Generative Adversarial Networks,
Object Detection, and Optical Character Recognition and groups the knowledge from these
areas into one semi-automated way of use, with nuances in use for alphabets and other types
of writing. A modified method of constructing a confusion matrix, used for evaluating object
detection algorithms when ground truth labels are not available to calculate Intersection over

Union IoU, is presented here as well.

Thanks to the latest technological development of powerful GPUs, TPUs and pocket
size, well-performing cameras, computer vision and object detection are nowadays ones of
the critical applications of Artificial Intelligence, as they allow computers to identify the
contents of their environment by saying what is in the picture, where and how it is
represented. It has become a standard that has contributed to automatisation in a vast number
of human and machine activities in recent years. From industry, where it is necessary to
consistently overview the processes of manufacturing and quality of products, counting
people in shopping malls or detecting risky behaviour in warehouses, through expert systems
or decision support systems, automatic number plate recognition barriers, medical diagnosis
support including tumour detection, kidney stones detection and many others, followed by
self-driving cars, to common applications such as photo editing programs, face tagging or
personalised advertisements. The connecting element of all these applications is Deep

Learning, specifically of various architectures of Convolutional Neural Networks.

The use of computer vision can make commercial organisations more competitive by
automating tasks that otherwise require the use of human resources. In many applications, a
machine can be more accurate or faster than a human in some respects. For this reason,
computer vision technology continues to evolve and improve rapidly. Nowadays, there is a

wide range of ready-made algorithms designed for object recognition in images, from simple



Single Shot Detectors, which mark selected objects in a smaller image in real-time, to
complex mask Region-based Convolutional Neural Networks, which, in addition to detection,
also offer marking of a cluster of pixels belonging to a given class, i.e., a mask - showing the
outline of the object. However, each object detection task cannot be approached in a unified

way and must be solved individually.

The utilisation of computer vision for automatic reading counts as one of the critical
applications of Artificial Intelligence. As part of my doctoral studies and grant projects
included in it, as well as the preparation of this dissertation, I decided to explore and expand

the possibilities of reading historical scripts.

In particular, this dissertation focuses on using existing and constructing new
architectures of Artificial Neural Networks that are applicable to the task of detecting
historical scripts and expanding datasets of letters in alphabets or their elementary subparts
(which, in the case of cuneiform fonts are the individual wedges) and presents novel solutions

of these problems using a fully convolutional approach.

The conducted research was published in 3 different WOS/Scopus-indexed journals and
4 WOS/Scopus-indexed conferences as an output of grant projects:

e PEF IGA 2021A0004 - “Reading Palmyrene Alphabet Characters Using
Artificial Intelligence Tools” [1] [2]

e PEF IGA 2022A0001 - “Research on methods for automatic dataset expansion
using machine learning tools” [3]

e UGC project reg. No CZ.02.2.69/0.0/0.0/19 _073/0016944 internal no. 31/2021 -
“Cuneiform analysis using Convolutional Neural Networks™ [4] [5]

e PEF IGA 2023A0004 — “Text segmentation methods of historical alphabets in
OCR development” [6] [7]



2 Theoretical basis and current state of art

2.1 Artificial Neural Networks

2.1.1 Brief history of ANNs

Artificial Neural Networks (ANNs) are one of the areas of artificial intelligence, in
addition to expert systems, fuzzy systems and genetic algorithms. They appeared in practice

in the field of artificial intelligence in the 1960s after years of previous research. [§]

The first simple neuron model dates back to 1943 when Warren McCulloch and Walter
Pitts proposed a mathematical model of the central nervous system and declared that “at any
instant, a neuron has some threshold, which excitation must exceed to initiate an impulse”
and described the propagation of the impulse. [9] In 1949, Donald Hebb's book “The
Organization of Behavior” provided guidance on how to apply the learning rule to neuronal
synapses. [10] In 1951, Marvin Minsky created the first SNARC neurocomputer. [11] In
1957, Frank Rosenblatt generalised the neuron model to a perceptron calculating real
numbers in his report from Cornell Aeronautical Laboratory. [12] In 1958, together with
Charles Wightman, he built the "Mark I Perceptron" neurocomputer with 512 parameters at
the MIT laboratories, which was able to recognise characters, and in 1960, John C. Hay et al.
wrote an operator manual [13]. In 1965, Bernard Widrow and his students created the
Adaptive Linear Element (ADALINE) similar to perceptron, but the individual elements
performed linear functions compared to perceptron [14], after them and one of his doctoral
students, Marcian Edward “Ted” Hoff, who was also the co-inventor of microprocessors, the
Widrow-Hoff least mean square training algorithm was named, it was published in Hoff’s
dissertation. [15] Another pioneer in the field of neurocomputers was Karl Steinbuch, who
published a comparison of two adaptive classification networks with Widrow [16] and
developed a model of a binary associative network, the principle of which is based on

associative memory and the provision of certain information based on its partial knowledge.

For almost twenty years, neurocomputers have only been used for experimental
purposes because perceptron has been shown to be unable to perform equivalence X1 < x»
(EQV) and non-equivalence x; @ x» (XOR), as these Boolean functions are not linearly

separable, and the linear separability of data sets is an essential prerequisite for constructing a



single perceptron. It was not until 1982 that grant projects by John Hopfield (after whom
Hopfield Neural Networks are named) excelled, proving the connection of some models with
physical models of magnetic materials [17], according to which the Hopfield networks based
on the principle of auto-associative memory were named. In 1986, David E. Rumelhart et al.
published a practical backpropagation learning algorithm for multilayer networks in the
Parallel Distributed Processing (PDP) group [19]. However, it was mentioned previously in
1974 in Paul John Werbos's dissertation [18]. In the 1990s, journals about Artificial Neural
Networks began to publish, and the international journal Neural Network World [19] has
been available in the Czech Republic since 1991.

It was not until 2012 that the field experienced a breakthrough in ImageNet
classification contests [20], because until then other methods were more successful. Since

then, artificial intelligence has been developed in a wide range of areas.
2.1.2 Description

Artificial neurons are an abstraction of the mechanism that processes information
compared to the way that biological neurons send information to and within the brain and
determine how to respond to that information. The training or prediction presents the first
neural layer with an input from which we need to obtain an output. The input of the neuron to
the next layer is always the output from the previous layer, and only the last layer shows the
output. The whole network behaves based on parameters (threshold and weights) that

determine the course of networks, so it is an oriented graph. [12]

An output — activation function (formerly, output function and activation functions had
different meanings, but now it is interpreted the same way) is a function that converts an
aggregated signal into an output signal, for example linear, binary - sigma (o(#4)), logistical
sigmoid, signum, tanh, ReLU (Rectified Linear Unit), leaky ReLU, eLU (Exponential Linear
Unit), softmax (generalised sigmoid, counting probability of the input belonging to a single
class), or other. [21] These functions define the outputs of the neurons. Relevant activation
functions of individual Neural Network layers will be explained later in the text of individual

chapters. The simplest neuron — perceptron — is explained in the following Figure 1.
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Figure I - mathematical model of perceptron with output function o(h) [22]

where:
w = (W, ...., Wy) is the vector of weights
h = Y-, x; - w; is the postsynaptic potential

and the output function is 6(h) = 1 forh = 0 and o (h) = 0 for h < 0.

Unfortunately, the analysis of the dynamic behaviour of a Deep Neural Network is
extremely complicated, since the calculation process is not linear and may include hundreds
of thousands of computed parameters, and is unlike classical algorithms, where it is possible
(for more complex programs such as debug mode) to follow the program step by step.

Therefore, studying these problems is both practically and theoretically a core issue.

2.2 Convolutional Neural Networks

To analyse images, we use special kinds of Neural Networks called Convolutional
Neural Networks (CNNs). CNNs are multilayer Neural Networks with thousands of
parameters. They are commonly used to recognize objects in an image directly from
individual pixels, regardless of their distortion, shift within the image, colour change, or other
criteria. The name convolution means filtering performed by a feature map, automatically
extracting object features (such as edges, arches and more). The cornerstone of each image

analysis is classification, done by CNN.
2.2.1 Main principles

CNNs, unlike densely connected networks, use three main principles — local
connectivity, shared weights (or weight replication) and spatial or temporal subsampling. [23]

Thus, one layer of a convolutional Neural Network is not entirely connected to the next, but



only to selected parts, called subregions, avoiding an unmanageable number of parameters in

hidden layers.
2.2.2 CNN layers

The architecture of CNNs consists of an input convolutional layer (in Deep Learning
Python library keras [24] it is called Conv2D), a subsampling layer (MaxPooling2D) and a
suitable iteration of these layers, a layer producing a one-dimensional vector (Flatten), a
densely connected layer (Dense), and an output layer (Dense) whose number of neurons
corresponds to the number of classes to be classified. In the case of localising an object in the
image, the output layer will usually, apart from the class index, contain two points - [xmin,
ymax] and [xmax, ymin] — which, by joining, will create a frame (bounding box), around the
object within the image. There are more options to calculate the bounding box, which will be
explained in reference to relevant existing object detection algorithms in future chapters.
More layers, like Dropout for regularisations and randomly zeroing out weights, may be used
in a CNN. However, the following description deals with obligatory layers. The complete list

of keras layers and their description can be found in [25].

2.2.2.1 Convolutional layer

2.2.2.1.1 Image representation

Each input image Z is represented in the form of a 3-dimensional (in case of RGB
spectrum) M x N x D or 2-dimensional (in case of black and white spectrum) M x N array,
where M is the width, N is the height and D is the depth. For example, the black and white
letter “O” in a 9 x 12 px grid with zero-padding P = 1 looks as follows:

10
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Table 1 - Convolutional layer input - a black and white letter "O" represented in pixels

2.2.2.1.2 Convolutional filters and feature maps

A small matrix of numbers called convolutional filter c (also called convolutional
kernel or window) of size width W x height H, where W, H > 0, is applied on the image with
a specified stride S (which is a step size, by which the convolutional filter is shifted), S > 0.
Within it, individual components of the object, such as corners or edges, are recognized.
Usually, multiple filters are applied. When applying the filters, zero-padding P around the
image, which adds zeroes around the input image, can be used, so that there is no loss of
information around the image corners during the computation, P > 0. The output is called
feature map F (also called activation map), which, after being transformed by output
function, transfers to subsequent layers. The equation is following. The indices of rows and

columns of the output feature map are i and j.

Fli,jl= (@ *oli,jl = XmXnc[m,n] - z[i —m,j —n] (1

The dimensions / — the width — and J — the height — of the output feature map can be
counted from the sizes of input M x N, padding P, stride S, and window’s width and height
W, H.

M-W+2P

I'= S+1 (2)
N-H+2P

/=" G)

11



The number of parameters in a convolutional layer is
params(conv) = (fin- 1°] + 1) four 4)

where:
fin =number of input feature maps
I-J = convolutional window size

Jfour = number of output feature maps

2.2.2.1.3 Output functions of convolutional layers

There are four main non-linear activation functions used in convolutional layers —

logistic sigmoid, tanh, ReLU and leaky ReLU. Their graphs are visible in Figure 1 below.

() (d)

Figure 2 — activation functions of convolutional layers: (a) sigmoid (b) tanh (c) ReLU (d) leaky ReLU [26]

Sigmoid or logistic sigmoid function is such function, which is increasing, continuous
and smooth and reaches values between 0 and 1. The main disadvantage of a sigmoid
function is, that its gradient rapidly converges towards 0 (Vanishing Gradient problem). In
keras, sigmoid function is equivalent to two-element softmax (which converts a vector of
values to a probability distribution). [27]

sigm (h) = L (5)

1+e~h

12



Another commonly used output function is Hyperbolic Tangent (tanh), also belonging
to sigmoid functions. Tanh is converting the output feature map values to values between -1
and 1.

1-e~2

tanh(h) = e (6)

One of the most common output functions in a convolutional layer, transforming output
feature maps, is Rectified Linear Unit (ReLU). In contradiction with sigmoid functions, it
prevents gradient vanishing problem, and therefore it is preferred. ReL.U is first mentioned in
Fukushima’s Neocognitron [28] and has been regularly used since the publication of
Krizhevsky’s AlexNet [29]. By zeroing out negative values from the output feature maps, it

prevents negative pixels from passing to following layers.
ReLU (h) = max (0, h) (7)

However, even ReLU encounters its problem, called “dying ReLU”. A dead ReLU
always outputs 0, reached by using a large negative bias, resulting in the training not
progressing, because the gradient of 0 is also 0. That is why Parametric Rectified Linear
Unit (PReLU) was introduced, assigning a non-zero slope to the negative input values, [30]
simplified into leaky ReLU with a constant value (usually 0.01) instead of a parameter a, the

mathematical definition of PReLU is following.
PReLU(h) = max(0, h) + a - min (0, h) (8)
2.2.2.2 Subsampling layer

Usually following a convolutional, another CNN layer called the subsampling (also
pooling) layer is placed which aggregates neighbouring pixels according to its type, resulting
in a reduction of the input size. Pooling is a sample-based discretisation process, aggregating
the values of adjacent units. We distinguish max pooling (where we take the highest value of
neighbouring pixels and pool them to a downsized matrix, shifting a specified window by a
specified stride) and average pooling (where we take the average value). There are 0
parameters in a pooling layer, as it is only reducing dimension and not learning any new

information.

13



Max pooling

e
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914|514 9| 5
N
718
Figure 3 - Demostration of maxpooling and averagepooling operation [31]

2.2.2.3 Flatten layer

Within a Flatten layer, a one-dimensional vector is created from a multi-dimensional
tensor at the input of the given Flatten layer, with no effect on the batch. In keras, the input to
Flatten layer is usually in the format (batch, channels, height, width), if ordering of the inputs
is “channels_first” or (batch, height, width, channels), if the ordering is “channels_last”. Not
affecting the batch, an example input (None, 1, 10, 64) will result in (None, 640) output. A
Flatten layer also has 0 parameters, as it only changes the shape but perceives the same

information.

2.2.2.4 Dense layers and output functions

A Dense layer is fully connected — all neurons from the Flatten layer are connected to
all neurons in the Dense layer.

The number of parameters of the Dense layer is following.
param(Dense) = (in+ 1) -out 9)

where:
in = input

out = number of output neurons

14



Output function of Dense layers depend on the task, which the CNN solves. The last
but one hidden Dense layer is logistical sigmoid in case of binary classification and logistical
sigmoid or tanh in case of multi-class classification. In the last Dense layer, in the case of
binary classification the output neurons will be logistical sigmoid. In case of a multi-class
classification, logistical sigmoid (in case of non-exclusive classification) or softmax (in case

of exclusive classification) is chosen for output neurons.
2.2.3 Training Convolutional Neural Networks

Modern Convolutional Neural Networks are trained with error backpropagation
algorithm, which is slightly different for each error function. It was originally derived for the
use with Sum of Square Errors Esse loss function and then, similarly derived for Cross-
entropy Ece. Esse 1s used for regression, therefore it is not suitable for measuring error of a
classification network. For binary classification with one output neuron, we minimise the
Binary Cross-entropy error (loss) function binary Ecr and for multi-class classification, we

minimise Categorical Cross-entropy categorical Ece. Cross-entropy is counted as follows.
binary Ecy = —Yie,(d; " Iny; + (1 —d;) - In(1 — y;)) (10)
categorical Ecp = — ¥, X%, d, - Iny; (11)

where:

;i = output of neuron with respective index i

d;=i-th component of the respective category (either 0 or 1)

m = number of categories

The binary Eck back-propagation is counted as follows. [32] At first, the total error
across all neurons is counted as the sum of errors of outputs as in (10). Considering the
logistic output function y; in a layer

1
1+e~Si

yi = (12)

where:

where:

15



h; = the postsynaptic potential of respective neuron
wj; = the weight of respective connection

s; = weighted sums of the hidden layer activations

we compute the gradient (partial derivation) with respect to the weights connecting

hidden neurons in the last layer, using chain rule.

O0Ece _ OEcpdy; 0si _ _Yi~di
owj; dy; 0s; 0wj; yir(1-yy)

grad Ecg = yi(l=y)-hj=Q;—d)-h (14)
In hidden layers, we also compute components of gradient and then we recursively
propagate the error within the network, from the last layer to the first, and update the weight

vector w" accordingly. [22]

n

wt =w"1l —¢-grad Ecg + p- wh (15)

where:
€ > 0 = parameter controlling the step size

u > 0 = parameter controlling the speed and stability of algorithm (momentum)

When the termination condition is met, the training is completed (it can be a selected

number of epochs or not getting better results for a specified number of epochs).
2.2.4 Development of CNNs

The first self-organised (unsupervised — learning without labelled data) predecessor of
CNN using local connectivity was called Neocognitron. It was published in Biological
Cybernetics by Kunihiko Fukushima in the 1980’s. It was named after extending “cognitron”,
a model proposed by the author in earlier years, based on Hubel and Wiesel model.
Neocognitron is capable of recognising patterns according to the geometrical similarity
(Gestalt) independent of their position. The main benefit over previous Neural Network
models was the ability not to be affected by the shifting or small distortion of an object within

an image. [28]

In 1998, Yann LeCun et al. published a CNN trained with the gradient back-
propagation algorithm, called LeNet, and applied it to the task of recognising handwritten

characters almost without pre-processing the images; this time, it involved supervised

16



learning (using labelled data). In the same paper, they presented a new learning paradigm,
Graph Transformer Network (GTN) for Optical Character Recognition (OCR) eliminating the
deficiencies of using fixed-size vectors for the set of parameters and the state information
communicated between the modules. [23] It was a generalisation and an extension of Hidden

Markov Models.
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Figure 4- LeNet-5 used for recognition of handwritten character (32 x 32 pixels), Source: [23]

In 2009, a milestone was reached, when a database of about 3.2 million hand-annotated
images called ImageNet was published in IEEE, meant for the use of image classification,
object recognition and automatic object clustering, and since 2012, there were ImageNet
classification contests. [20] In 2012, AlexNet was presented as a winner of the ImageNet
challenge, with 17% error rate. [29] It has a quite simple architecture, consisting of 5
convolutional, 3 pooling and 3 Dense layers, utilising ReLU output function in convolutional
layers. The same architecture was published under the name ZFNet in 2013, pointing out the
high impact of tuning hyperparameters. It won the contest ImageNet Large Scale Visual

Recognition Challenge 2013, dropping the error to 11 %. [33]

One of the 2014’s ImageNet contestants was a much deeper (11, 13, 16 and even 19
layers) Visual Geometry Group Network (VGGNet), presented in ICLR 2015 conference.
[34] Another contestant and the winner was GoogLeNet — an Inception network. Google
came up with its own complex Neural Network design, introducing a combination of
repeating Inception modules (Figure 5). There were two versions of inception modules, a
naive version and with dimension reduction Another difference from other networks was also

the omission of densely connected layers. [35]
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Figure 5 - Inception modules presented in GoogLeNet [35]
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the layers, which cause a Vanishing Gradient problem.

Very deep sequential neural networks encounter the Vanishing Gradient problem,
because, when training using gradient-based learning algorithms, the weights update
according to the partial derivate of error function, and if the derivate is too small, the weights
practically don’t update and there’s hardly any training going on (the weights stay on similar
level to the zero or random initialisation). [36] One of the first networks to try solving this
problem were Residual Networks (ResNet), winning the ImageNet challenge in 2015,
published in 2016 IEEE Conference on Computer Vision and Pattern Recognition. [37]
Residual Networks can be called an updated version of VGGNet [34], combining residual
blocks. In residual blocks, there is a skip connection — called identity connections — to the end

of the block instead of just connecting to the subsequent layer. This helps the model leave out
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Figure 6 - Residual block [37]

In 2016, an upgraded version of GoogleNet [35] was proposed by Francois Chollet
(author of Keras) and published in IEEE in 2017, it was called Xception [38], merging the
ideas of GoogLeNet and ResNet, replacing the inception blocks with depth-wise separable
convolutional layers. The difference between standard convolutional layers and depth-wise
separable convolutional layers is, that standard layers use convolutional filters to capture both
spatial (such as line, edge, oval) and cross-channel patterns (combinations like ear, nose,
mouth, creating a face) at once, while separable layers model each pattern category

separately.

A year later, in 2018, SENet was created by Jie Hu et al. [39]. It consists of Squeeze-
and-Excitation (SE) blocks, Inception and Residual units. SENets, at the cost of
computational complexity, increase the state of art performance of CNN on different tasks
and datasets. Each SE block is, in fact, a small CNN, which analyses the output of the unit to
which it is attached, not looking for spatial patterns, but focusing on the depth dimension
(each block has 3 layers — Global average pooling layer, Dense layer with ReLU activation
and Dense layer with Sigmoid activation). Then, it recalibrates the feature maps (reduces the

irrelevant ones and boosts the relevant ones) in accordance with a recalibration vector.

In 2019, EfficientNet was published by Tan et al. [40]. They presented the concept of
scaling up MobileNets and ResNets. The compound scaling method further improved the

accuracy on ImageNet by up to 2.5 % with fewer parameters.
2.2.5 Classification on mobile devices

With the development of smart phones, tablets and other handheld computers used in

the industry such as in autonomous driving cars or autopilots, which have limited
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computational capacity, arose the need to create networks with a lower number of parameters

while keeping the target accuracy. These networks are called lightweight [41] networks.

SqueezeNet, limiting the size of the AlexNet model from about 240 MB to less than 7
MB was presented in 2016 by Iandola et al. [42] To achieve a small number of parameters in
the CNN, they replaced some commonly used 3x3 convolution filters with 1x1 filters,
limiting the parameters 9 times, while keeping the same number of filters. They also
decreased the number of input channels to 3x3 using the Squeeze layers and used delayed
subsampling (pooling). By delaying the subsampling to later layers while limiting the
parameters with decreasing the filter size, they kept the accuracy high. In the same paper,
they presented Fire modules, utilising Squeeze convolutional layers with 1x1 filters followed
by an Expand layer with 1x1 and 3x3 convolutional filters. They presented three types of
architectures of the final SqueezeNet, the simplest architecture consists of 1 Convolutional
layer at the start, 8 Fire modules, 1 Convolutional layer at the end followed by

AveragePooling and a Dense layer with softmax activation.

The MobileNet family was presented in 2017 by Howard et al. [43]. It was developed,
as the name suggest, for the use in mobile phones as well as in embedded vision applications,
aiming to reach a high speed while keeping the model size small. Howard et al. suggests
using two new hyperparameters (width multiplier and resolution multiplier), that trade-off
between accuracy and latency of the models. The architecture consists of Depthwise
Separable Convolutional layers, which are a form of factorized standard convolutions, Batch
normalisation layers, ReLU and a 1x1 pointwise Convolutional layers. MobileNet has
slightly lower accuracy on standard ImageNet dataset than VGG16 [34] or GoogLeNet
(Inception) [35], but is very fast.

In 2018, ShuffleNet was published by Zhang et al [44]. They grouped feature maps and
performed the convolutions on groups, reducing the computational cost. It is called
ShuffleNet as it shuffles the channels for each feature map group, to distribute information
across channels, consists of a Convolutional layer, 3 Shuffle blocks, global pooling and
Dense layer. The channel shuffle is differentiable, which means it can be used in end-to-end

training. The network was 18 times faster than SqueezeNet.

More techniques to reduce the number of parameters were presented in a network

family called ShiftNet by Wu et al., built from shift-based modules [45]. The main goal was
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to limit the number of floating-point operations (FLOPs). They came up with a FLOP-free
shift operation with zero parameters as an alternative to depth-wise 3x3 convolutions. While
keeping the same accuracy as SqueezeNet, they limited the model size to about two thirds.
FE-Net introduced by Chen et al. [46] limits the shift operations presented in ShiftNet
to only a few feature maps, in Sparse Shift Layers (SSL). The team claimed, that ShuffleNet
and MobileNet are inefficient in practice because they occupy about 80 % of GPU runtime,
which mismatches the theoretical FLOPs, and suggested a solution to it by using blocks of
1x1 Convolutional layers with a limited number of shifts, reached by penalising the shift
operation during optimisation with the use of quantisation-aware shift learning method. They
claim and prove that not all shift operations are necessary and slow down the computation a
lot. While leaving out some of the shifts, the accuracy drops a little, but the speed is increased

significantly.

In 2020, and re-printed in Springer in 2022, EfficientNet-eLite was presented by Wang
et al. [47], based on Tan’s EfficientNet [40]. They introduced Network Candidate Search
(NCS), which measures the different models’ resource usage and performance and suggests
downscaling the EfficientNet. They reached an even lower number of parameters and a

slightly higher accuracy in their new network.
2.2.6 Latest research

The latest research on CNNs is, on top of building architectures (still utilising
suggested blocks from previous research), increasing speed, limiting model size and tuning
hyperparameters, focused mainly on different ways to find and classify objects within an
image, to identify relevant regions of interests and to find the best approach to creating the
most fitting bounding boxes and segmentation, which opens a whole another chapter of

computer vision tasks.

2.3 Computer vision tasks

Computer vision utilises CNNs and aims to make computer systems perceivable to the
visual world by recognising the meaning of pixels (i.e., objects) in pictures. [41] There are
three main tasks of computer vision, which can be represented by questions about the objects

in a visual scene:
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e C(lassification (what)
e Object detection (where)

e Scene understanding — segmentation (how)

In the early days of computer vision, manual feature extraction was combined with
classic machine learning techniques. However, this has prevented computers from
recognising more complex objects that have many shapes and colours (cats, dogs, ...).
Nowadays, in some tasks, Al techniques are better performing than humans, as automatic
feature extraction is incorporated in convolutional layers of CNNs, and manual feature
extraction only serves to reduce the dimensionality of input data or is used in different tasks,
which belong to unsupervised learning, such as clustering, autoencoders or bag-of-words

technique in Natural Language Processing (NLP).

2.4 Classification

Classification is a process of computing a probability vector of each class, already
described in Chapter 2.2.3. The training datasets consist of tuples (image, class). In
classification networks, the number of neurons in the last Dense layer corresponds with the
number of object classes, and we use the softmax function as activation and the error function
cross-entropy. (10) (11) In the 1990s, with the rise of Artificial Neural Networks, kernel
methods began to emerge. [48] In 1995, Vapnik and Cortes published the Support Vector
Machine (SVM) classification method. [49] Revolution in approach to classification has been
reached since ImageNet contests, launching the rapid development of different neural
network architectures, tuning hyperparameters and creating special networks for individual

tasks. Nowadays, the ImageNet database contains over 14 million images.
2.4.1 Determining dataset size

The fundamental part of each practical research is data in suitable quality and quantity.
As stated in Cho Junghwan’s research about classification accuracy of Computer
Tomography (CT) scans of different body parts [50], to get an approximately 97.25 %
classification accuracy, we need about 1000 images per class, or to get 99.5 % accuracy, it is
more than 4000, as visible in Figure 7. The dataset size of course also depends on the

complexity of classified data — the more complex data, the more we need.
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Figure 7 - Number of data needed per class for a high classification accuracy [50]

2.4.2 Classifier success measures

The generalisation capability, i.e., the ability to correctly classify new inputs that did
not appear in the training set, can be measured by standard metrics for each classifier, both

binary and multi-class.

2.4.2.1 Confusion matrix

These measures are calculated from four basic values, written in a confusion matrix. A
binary confusion matrix of a binary classifier, deciding, whether the image contains the

object of interest or not, consists of:

e true positives 7P, which are values classified as #rue and are true in real
e true negatives TN, which are values classified as false and are false in real
e false positives FP, which are values classified as true and are false in real

o false negatives F/N, which are values classified as false and are true in real
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Predicted Class
True False
Real class True TP FN
False FP TN
Table 2 - Binary confission matrix
A multi-class confusion matrix for 4 disjunctive classes is following:
actual / predicted |class 1 class 2 class 3 class 4
FNforclass1, |FNforclass1, |FN forclass 1,
class 1 TP for class 1
FP for class 2 FP for class 3 FP for class 4
FN for class 2, FN for class 2, | FN for class 2,
class 2 TP for class 2
FP for class 1 FP for class 3 FP for class 4
FN for class 3, | FN for class 3, FN for class 3,
class 3 TP for class 3
FP for class 1 FP for class 2 FP for class 4
FN forclass4, |FN forclass4, |FN forclass4,
class 4 TP for class 4
FP for class 1 FP for class 2 FP for class 3

Table 3 - 4-class confusion matrix

The values of TP;, FN; and FP; can be obtained from the multi-class confusion matrix.

FN; is obtained as the sum of the FN; values for the corresponding class in all columns
except the element on the diagonal of the confusion matrix. Thus, for class 1, it is the sum of

the values of the 2nd, 3rd, and 4th columns.

FP; is obtained as the sum of the columns of the corresponding class, again excluding

the element on the diagonal.

TP; is then the corresponding element on the diagonal.
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TN; is mathematically expressible as
where ; = the number of elements of the i-th category

2.4.2.2 Measures derived from confusion matrix

There are multiple measures derived from the confusion matrix, namely correctness
(accuracy) c, error e, precision p, recall (sensitivity) r, F-measure F. In case of binary

classification, they are calculated as follows.

c=— (17)
e=1-c (18)
TP
P = Trvrp (19)
TP
Uy (20)
_ 2:(rp)
F = v (21)
where:
N=TP+FN+FP+TN (22)
Ifs=p,thenF=5s=p
In case of disjunctive multi-class classification, for each category i = 1, ...., C, where

C = number of categories, a binary decision is made, whether the object belongs to the
category i or it belongs to any other category j # i. Then, the evaluating measures are
counted as follows and the overall parameters of precision p, recall » and F-score F are their
arithmetic means.

¢ = LA TPHEE, TN,

- (23)

_TPi (24)

Pi = 1p+rp,

25



TP;

"= T (25)
2:(ri'py)

2.5 Object Detection

Object detection [51, pp. 483-488] is a combination of two tasks — classification and
localisation. Localisation can be described as a regression task, predicting bounding boxes
around the desired object in different formats. The dataset then consists of tuples in form of
(image, (class, bounding box). In deep learning projects using object detection, the hardest

and most time and resource-costly problem is getting the labels, as it has to be hand-made.

At the start, object detection was done by a sliding window detection. The original
approach was to train a binary classifier, deciding, whether the object of interest is in the
given window of cells in the grid, to which the image was divided. Just like in the calculation
of convolutions, the window shifted from left to right, top to bottom. For each combination of
cells in a given grid, it calculated whether there was the object of interest in that window,
along with its probability. When this window shifted by one step, the classifier detected some
of the cells more than once. When the probabilities were counted for a small window, the
window size increased and slid again across all regions. Due to running through the CNN
many times, this approach is very slow. It also needs post-processing, as the same objects are
detected multiple times. A common post-processing technique, deleting bounding boxes, that
are overlapping each other, keeping only the one with the highest presence of the object —

“objectness”, is called non-max suppression.

In 2014, Fully Convolutional Networks (FCN) were presented by Long et al. [52]. They
transferred at that time contemporary architectures — AlexNet [29], VGG Net [34] and
GoogLeNet [35] to classification and pixel-to-pixel classification (i.e., segmentation) and
also presented a new architecture. By replacing dense layers with convolutional layers, the
image only has to be processed once, significantly speeding up the object detection. One of
the generally used architectures utilising this principle is YOLO (You Only Look Once) [53],

which is described in more detail in the chapter One stage detection algorithms.
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2.5.1 Traditional image processing techniques vs Deep Learning

A study was published by HCL Tech [54] about the comparison of Deep Learning and
traditional image processing (TIP) techniques. TIP like scale-invariant feature transform
(SIFT) [55], Histograms of oriented gradients (HOG) [56] and other algorithms usually reach
lower accuracy in all computer vision areas — classification, object detection and
segmentation, and require more fine-tuning and expert analysis. These methods are based on
block-wise orientation histograms. The traditional techniques are more domain-specific and
less flexible, however, they are still relevant in some cases. They do not need large datasets, a
high computing power, the annotation time shortens significantly, they have a high domain
expertise and algorithm transparency. However, feature engineering is required. For some
applications like 3D modelling, noise reduction, image registration and data compression,
traditional models are still suitable. According to Boesch [57], traditional image processing in
OpenCV don’t require annotated images. On the contrary, deep learning caused, that in some
cases, machine perform better than humans. In comparison with Deep Learning methods, TIP

have been recently used sparsely in contemporary image processing research.
2.5.2 Bounding box formats

There are many different object detection algorithms, which accept various types of
bounding boxes. The most commonly used are PASCAL VOC (.xml), COCO (.json),
Tensorflow Object Detection (.csv) and YOLO DarkNet (.txt). [58] Each of these types

describe the boxes in another way.

2.5.2.1 PASCAL VOC bounding boxes

The name comes from an abbreviation of “Pattern Analysis, Statistical Modelling and
Computational Learning Visual Object Challenge”. PASCAL VOC bounding boxes are
saved as a .xml file and are presented as a set of absolute coordinates Xmin, Xmax, Ymin, Ymax
closed in <bndbox> tags. Each coordinate set is related to one object with a class name and
there is one .xml file for each image in the dataset, which contains all bounding boxes in the

given image.
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2.5.2.2 COCO Json bounding boxes

COCO Json is named after the commonly used dataset COCO - Common Objects in
Context, which contains approximately 328000 images in 91 classes, with about 2.5 million
labelled objects. There is one .json file for the whole dataset, which includes the list of
categories, image IDs, object categories and the bounding boxes are saved as an array of four
absolute numerical values in “bbox”: [x-coordinate of the upper left corner, y-coordinate of

the upper left corner, width of object, height of object].

2.5.2.3 Tensorflow Object Detection bounding boxes

When using Tensorflow Object Detection API, a TF Record file is needed to train the
detector network. It has a binary, human non-readable format, therefore it is generated using
a script from a .csv file. Each .csv file contains a table describing the whole dataset — one row
per image — with the following columns: filename, width, height, class name, Xmin, Xmax, Ymin,

Vmax. The coordinates are also absolute values.

2.5.2.4 YOLO DarkNet bounding boxes

YOLO Darknet bounding boxes work with relative values of coordinates (values of the
centre of the object and dimensions of the object are normalised between 0 and 1) and are
saved in a .txt file. For each image in a dataset, there is one .txt file, containing one bounding
box on each line. The values are separated with blank spaces and come in this order:
class_index Xcentre Yeentre Width height. As images are resized to a square of fixed size, working
with relative coordinates has many advantages. When detecting an object and saving labels in

YOLO format, it is possible to retrieve information from the original, non-resized image.
2.5.3 Latest Object detection algorithms

Algorithms implementing object detection are based on two approaches. [59] Two-
stage detection and one-stage detection algorithms. Generally, it can be said, that one-stage
detectors are faster and structurally simpler, and two-stage detectors have a higher
recognition and localisation accuracy but are harder to implement. Therefore, each of them is

suitable for different practical applications.
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2.5.3.1 Two-Stage Detection

These object detection algorithms are divided in two stages. The first stage is predicting
candidate bounding boxes, using traditional Computer Vision methods or Deep Learning,
while the second one is classification with bounding box regression. It means, that two-stage
detectors first find a Region of Interest (Rol), then crop the image and classify the cropped
image. Because the cropping operation is non-differentiable, such detectors are usually not
end-to-end trainable (all parameters of the model cannot be simultaneously trained for one
loss function). There are various algorithms using different approach to this two-stage
detecting, the most popular are Regions with CNN features (R-CNN), Fast R-CNN, Faster R-
CNN, Spatial Pyramid Pooling Network (SPPNet), Feature Pyramid Networks (FPN),
Detecto, combining previous approaches, and Gated Recurrent Convolutional Neural

Network (G-RCNN).
2.5.3.1.1 R-CNN, Fast R-CNN, Faster R-CNN

One of the prominent two-stage detectors is the R-CNN Family. All versions of R-CNN
use PASCAL VOC bounding boxes

In 2014, the first version of R-CNN was presented by Girshick et al. [60]. Due to large
receptive fields and strides, Girshick decided not to use sliding-window technique for object
localisation and introduced recognition using regions instead. R-CNN consists of three steps
— region proposals, feature extraction and classification. Approximately 2000 regions, which
are category independent, are proposed during prediction, and by using CNN, a fixed-length
feature vector from each proposal is extracted and after that, each region is classified with a

SVM, which is category specific.

As the training of R-CNN is a multi-stage pipeline, which is expensive in memory and
time and the detection is quite slow, a year later, Girshick published an improved version,
213 times faster at testing and 9 times faster at training, called Fast R-CNN [61]. He
introduced multi-task loss and a single-stage multi-task training, which saved time and space,
as it left out the need of feature caching. He also replaced a SVM classifier with a softmax

CNN classifier, which also increased the speed and performance.
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In 2017, Ren et al. followed Girshick’s research and introduced Faster R-CNN [62]. He
focused on speeding up the region proposal step, as in Fast R-CNN, it consumed same or
even more time than the detection network. They proposed an end-to-end trainable Region
Proposal Network (RPN), which shared layers with the object detection networks and
significantly speeded up the testing time, getting close to real time with 10 ms per image.
They also presented, at that time novel, anchor boxes, they served as a reference when using

multiple aspect ratios and scales of images.
2.5.3.1.2 Spatial Pyramid Pooling Network (SPPNet)

Spatial Pyramid Pooling Network — the SPPNet — comes from the very author of
Detectron, Res-Net and Mask R-CNN — Kaiming He — et al. [63]. The Spatial Pyramid
Pooling method does not require a fixed-size input that is normally reached by resizing or
changing the original image — cropping or warping (a combination of cropping and stretching
into a square). Making such manipulations unnecessary is a convenience when using different
sizes, scales and aspect ratios of images in datasets. The reason for using fixed-size images is

that the fully connected (Dense) layers require a fixed-length input by definition.

As convolutional and pooling layers work on a sliding-window basis and can work with
any size and shape of input, the authors put a newly introduced SPP layer, which creates a
fixed-size output from a variable-size input, on top of the last convolutional layer in the

network before the classifiers (SVM or softmax - Dense layers).

Getting a fixed-size vector from a variable-size input can be reached by using two
approaches — the first one is a vector space model Bag-of-Words (BoW) [64], which maps the
visual features and their number occurrences, making it a fixed-size vector (i.e.: {eyes: 8,
legs: 8, torso: 1, ears: 0, nose: 0, claws:2, tail: 0} — a simplified example of animal features,
in this case, representing a spider; in real use, the features are extracted automatically by the
CNN). The other option is using a BoW improvement — Spatial Pyramid Pooling, which

maintains spatial information by pooling in local spatial bins, regardless of the image site.

SPPNet had good results on ImageNet’s contest ILSVRC 2014 and was ranked #2 in

object detection and #3 in classification.

2.5.3.1.3 Feature Pyramid Network (FPN)
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Feature Pyramid Networks (FPN) were published in 2016 [65]. They follow up on the
SPPNet, with a significant improvement in generic feature extraction. In combination with R-
CNN, it surpassed the object detection results of COCO dataset. This is also one of the
flagship networks used for generating segmentation proposals, following the DeepMask [66]

framework.
2.5.3.1.4 Detecto — ResNet, R-CNN and FPN

Detecto [67] is Python framework released in 2019, which combines Faster R-CNN.
ResNet-50 and FPN. As a callable Python package, it is easy to implement on custom data,
with a very high precision in comparison to other object detection algorithms. It requires

bounding boxes in PASCAL VOC format and uses PyTorch instead of the usual TensorFlow.
2.5.3.1.5 Gated Recurrent Convolutional Neural Network G-RCNN

Wang et al. released G-RCNN in 2022 [68]. The principle stands in introducing gates
controlling the amount of information on input of a recurrent CNN. They follow-up on the
research of CNN with Adaptive Receptive Field, which works with deformable convolutions,
and combine it with skip connections introduced in ResNet [37] and recurrent connections
between neurons in the same layer. These networks are used for object recognition

(classification), but also scene text recognition (OCR) and object detection.

2.5.3.2 One-Stage Detection

One-stage detection algorithms only predict bounding boxes and leave out predicting
Rol. Because of that, it leverages anchors and a grid box to localise the object and constraint
its shape. The three most popular one-stage detectors are YOLO, SSD and RetinaNet. The

disadvantage of such detectors is a fixed-size input.
2.5.3.2.1 YOLO

YOLO is a famous family of networks with a controversial history, which belongs to
convolutional networks designed to classify and detect objects in images. The first version of
YOLO was proposed by Redmond et al. in 2015 [53] as YOLOv1, improved in 2016 [69] as
YOLOV2 and subsequently in 2018 [70] as YOLOvV3, then he left the research due to

potential misuse and various teams came up with further versions. At the time (as in the
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beginning of 2023), 9 versions are available. Older versions of YOLO use TFRecords to load
datasets, and later versions (YOLOv5+) require YOLO bounding boxes

At its release time, YOLOvI [53] was revolutionary, because it was so fast it could run
in real time (over 20 FPS) in a video; it exceeded the speed of Fast R-CNN with a 57.2%
mAP (mean Average Precision) on VOC 2007 dataset, however, when comparing the
prediction on one image, there was a significant number of localisation errors. Redmond and
his team’s approach differed from other detectors, as they framed object detection as a
regression problem with regards to a grid of cells instead of using a sliding window classifier
(which was a common approach before 2014). However, this approach also comes with its
downsides — all images are resized to 448 x 448 pixels, then a single convolutional network is
run to detect object with regards to the grid, and in order to avoid multiple detections of one
object and remove overlapping bounding boxes, non-max suppression is applied. However,
each grid cell can only detect two object and only one class (making it 98 objects in total),
therefore, YOLOVI struggles with images containing larger groups of small objects (i.e.,
flocks of birds). YOLOV1’s architecture consists of 24 Convolutional layers, 4 MaxPooling
layers and 2 Dense layers. The whole prediction is encoded as a tensor S X S X (B x5+ (),
where S = height and width of the image, B = number of bounding boxes, C = number of

classes.

YOLOV2 [69], or YOLO9000, named after the capability of detecting over 9000
classes, reached 76.8 % mAP on VOC 2007 (containing 20 classes) in 67 FPS. With 156
classes, the mAP drops to 16, dropping even more when more classes are used. In
comparison with YOLOV1, several changes were made. The input image size shrunk from
448 x 448 to 416 x 416 and there was a change in the architecture — the base of YOLOV2 is a
newly proposed Darknet-19, which has 19 Convolutional layers and 5 MaxPooling layers,
using 3x3 convolutions as well as 1x1 in order to compress the feature representations. By
removing the Dense layers, YOLOv2 had to introduce dimension clusters as anchor boxes to
predict bounding boxes instead of a static cell grid. For each anchor box, the class and
objectness is predicted. Although using anchor boxes allows more objects to be detected
(over a thousand within one image), the prediction accuracy lowered a bit. An average recall
of public datasets (like VOC, COCO or ImageNet) reached about 81 %, which is enough for

analysing a video, for example a surveillance camera, but not enough for precise detection
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(like in OCR). In the same paper, the system called WordTree is introduced, which is used to

unite the labels from different sources (COCO and ImageNet at once).

In an unusually informal technical report presenting version 3 [70], Joseph Redmond
and his teacher Ali Farhadi presented more improvements in YOLO. Darknet-19 was
replaced by Darknet-53 and detecting small objects improved, however, detecting large
objects deteriorated. The author (who himself was funded by Google and the Office of Naval
Research) was questioning the use of fast and precise object detectors — as most such research
was funded by the military or big corporations like Google and Facebook — Are the detectors
going to be used to harvest personal data and sell it to other subjects? Are they going to be
used by the army to train automatic targeting systems in order to kill a lot of people?
Redmond then stopped developing YOLO (and computer vision research altogether) in fear

of the potential misuse, however, other teams took over.

After 2 years of inactivity on YOLO, much to Redmond’s dismay, it was taken over by
Alexey Bochkovskyi et al. in 2020 and YOLOv4 was published [71]. Some of the changes
are the input image size, which has grown to 512 x 512, anchor optimisation, mosaic data
augmentation (proposed by Glen Jocher), cross mini-batch normalisation, dynamic mini-
batch size, IoU threshold, class label smoothing, and training tuning — genetic algorithms
were used in order to select the optimal hyperparameters during learning and different loss
algorithms were used for bounding box regression. These changes caused an improvement

both in speed and in accuracy.

Also in 2020, Glen Jocher released YOLOVS [72] with some differences from
YOLOV4, like automatic learning of bounding box anchors and an almost 10 times lower
model size, making it a lightweight model suitable for mobile real-time applications,
however, only as a code (which has been continually improved ever since), and by now (as of
2023), the paper was not presented. Many people had a problem with Jocher naming his
algorithm YOLOVS, as it was supposedly not novel enough and he is not the original author
of YOLO. He has made alliance with Joseph Nelso, the CEO of Roboflow [58], which is an
online platform for annotation, augmentation and also training different deep learning
projects, and since 2022. YOLOVS5 [72] can be also used for segmentation [73], if trained on

images with polygon annotations instead of standard rectangular bounding boxes.
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YOLOR (You Only Lear One Representation) followed the YOLO line in 2021 [74].
Published by Wang et al., they proposed a network, which integrates both types of knowledge
- implicit (which has nothing to do with the observation — subconscious learning) and explicit
(directly corresponding with the observation — conscious learning). Such network is capable
of general representation as well as sub-representations for various tasks, as it is a multiple-
output network with a single input. Some of the tasks are questions like what the object is,

where it is, what colour it has etc.

Along with YOLOR, YOLOX surpassing all previous YOLO versions was published in
the same year by Ge et al. from Megvii Technology. [75] In YOLOX, there are no anchors,
as in order to get optimal anchors, cluster analysis has to be performed before training, and
the objective was to speed up the process, the predictions look for a grid top, object width and
height. YOLOX has several versions with different sizes. One version is based on Darknet53,
then there is a L-version, Tiny and Nano with only 0.91 M parameters. Also an advanced
assignment of labels called SImOTA is presented in this paper; it calculates pair-wise
matching degree, which is represented by quality or cost for each “prediction — grid top” —
pair, then it selects best predictions and assigns the grids of positive predictions as positive

and the rest as negatives.

In 2022, YOLOv7 was published by YOLOR’s authors Wang et al. [76]. It does not
have a single specific architecture, but rather, it is more of a structure as it uses a novel model
scaling method that scales concatenation-based ELAN and residual-based CSPDarknet
models. In order to assign labels dynamically, they used a set of methods that were bag-of-

freebies to improve the model's accuracy and speed.

YOLOV6 was released a few months after YOLOvV7 by Li et al. [77], even more
improving the accuracy and speed by using four main techniques — presenting different scales
of models, a self-distillation strategy on classification and regression, a broad verification of
advanced detection techniques and reforming the quantisation scheme using a RepOptimizer
and a channel-wise distillation. YOLOvVS [78] was also released on GitHub by Ultralytics at
the beginning of 2023 (without the paper yet). YOLOVS is able to work with bigger square
images in real-time, by default, 640 x 640 pixels with almost 54 mAP. YOLOV9, developed
by Chien-Yao Wang et al., followed in February 2024. [79] They built a new YOLO on a
proposed Generalized Efficient Layer Aggregation Network (GELAN) architecture.
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2.5.3.2.2 SSD - Single Shot Detector

Presented by Liu et al. in 2016 [80], the Single Shot MultiBox Detector (SSD) detects
objects using only one deep Convolutional Neural Network. It creates default bounding boxes
and generates scores for the presence of each category of objects in each default bounding
box. It also adapts the box to match the shape of the given object better. Although the SSD is
a relatively simple algorithm, it reaches a sufficient accuracy on small images and
outperforms Faster R-CNN in speed (as most one-shot detectors do with two-stage detectors).
As Liu criticised the two-stage detectors for being too slow for real-time applications, he
suggested SSD with a feed-forward CNN, VGG-16 base, which makes it even faster than

YOLO. The loss of the model is counted as a weighted sum between the localisation losses.
2.5.3.2.3 RetinaNet

In 2017, Lin et al. released another one-stage detector, called RetinaNet [81]. They
came up with a novel loss, addressing the problem of one-stage detectors with class-
imbalanced datasets. It is called the focal loss, which extends the cross-entropy loss with a
modulating factor (1 — p,)Y utilising a tuneable focusing parameter y > 0, with an
experimentally reached optimal value of 2, focusing on learning on hard negative examples.
The modulating factor extends the range in which a prediction receives a low loss. The
architecture of RetinaNet consists of an FPN backbone and a feedforward ResNet,

minimising focal loss during training.
2.5.3.2.4 SqueezeDet

SqueezeDet [82] is a Fully Convolutional Network (FCN) that was released by the Shift
[46] author team with the aim of use in autonomous driving. Inspired by YOLO but with a
smaller (and scalable) model size, the SqueezeDet team adopts a single-stage detection
pipeline using anchors. However, they use only convolutional layers not just to extract
feature maps but also for a novel output layer called ConvDet, which predicts bounding
boxes. The coordinates of bounding boxes are counted as a regression with regard to the

relative coordinates of anchors.
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2.5.4 Comparing object detection algorithms

2.5.4.1 Evaluation options

In object detection algorithms, we usually evaluate automatically on labelled test data.
It is not possible to simply count 7P, FN, FP, and TN as it is done in classification. [83]

For this reason, the most common metric to measure how well the model predicts the
bounding boxes is Intersection over Union (IoU). It is the area of intersection of real and
predicted bounding boxes, divided by their union. The higher the IoU, the more precise the
detection is. We can find it in tf.keras.metrics.MeanloU class. [84]

From IoU, we can calculate TP, FN, FP, and TN. We establish an IoU threshold, which
is considered sufficient.

If IoU = IoU threshold, we mark the box as TP. All boxes without intersections are
marked as FP, and boxes with low IoU are marked as F'N. Then, we construct the confusion
matrix just like with classification.

In some cases where we don’t have the ground truth labels available, it is inconvenient

to use this method; therefore, in the comments section, a method is suggested.

2.6 Segmentation

Segmentation is the most complex computer vision task of all three. It can be explained
as pixel-level classification. By clustering pixels belonging to a selected class, the algorithm
shows, where the exact object boundaries are located. There are two types of segmentation:
semantic segmentation, which clusters all pixels of objects belonging to the same class, even
if they overlap, and instance segmentation, which identifies each object instance separately,
even if they belong to the same class. Instance segmentation decides the outlines of an

instance in accordance with its shape, texture, brightness, and colour. [85]
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(c) (d)

Figure 8- Computer vision tasks: (a) image classification, (b) object detection, (c) semantic segmentation (d) instance

segmentation. [86]

2.6.1 Mathematical methods used for segmentation

There are two main strategies in image segmentation:

e similarity — this approach is based on thresholding, comparing the similarity of
neighbouring pixels
e discontinuity — this method incorporates algorithms of line, point and edge

detection

Various mathematical techniques are available to segment the content of an image;
however, due to the focus of this dissertation (neural networks), these methods are not

described in detail.

Methods such as graph cuts, pseudo-Boolean programming, and fast optimisation [87]
are used to create a Markov Random Field (MRF) model estimation, which are undirected

graphs.
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Another one is constructing a Bayesian network (multiple variants of Directed Acyclic
Graphs — DAGs). Baxter et al. [88] described a Directed Acyclic Graph Max-Flow
(DAGMF) image segmentation, capable of segmenting a wide variety of input images from
different areas. This approach orders labels into a set of continuous spaces, marking each

pixel in the input image with a category.
2.6.2 Object detection algorithms used for segmentation

2.6.2.1 Evolution of semantic segmentation

In 2017, Garcia-Garcia et al. presented a review of semantic segmentation done with
deep learning techniques [86]. In semantic segmentation, each pixel in the picture is
classified. Different objects of the same class are marked the same. Regardless of whether

there is one or more objects of the same class, they are not distinguished.

Instance segmentation is, however, more challenging, as it requires precisely
segmenting each instance while correctly detecting all objects. It combines object detection

and semantic segmentation within each bounding box separately.

2.6.2.2 Early approaches of instance segmentation

The origin of segmentation was a previously mentioned Fully Convolutional Network
by Long et al. [52] Many instance segmentation papers are based on segment proposals.
Earlier proposals from around 2013 were based on bottom-up segments [89] [90], DeepMask
by Chen et al. from 2016 [66] and research following it by Pinheiro et al. [91] is based on
Fast R-CNN and segment candidate proposals, where the segmentation precedes object
recognition, making it less accurate, however, at that time, it improved the state of art in the
recall by 10 — 20 %. In 2015, Dai et al. [92] suggested a complex model, which consists of a
sequence (or, as they call it, cascade) of three convolutional models. The first one
differentiates instances, the second one estimates masks, and the last one is a classifier. It is a
sequence and is not predicted parallelly. As already described in Chapter 2.5.3.1. Two-Stage
Detection, Feature Pyramid Networks (FPN) were one of the flagship object detectors with

automatically generated mask proposals.
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The most contemporary instance segmentation models are currently based on Mask R-
CNN and, since 2022, also on YOLOvS5, YOLOvV7 and since 2023, on YOLOvS and
YOLOV9 in 2024.

2.6.2.3 Mask R-CNN

Mask R-CNN was proposed in 2017 by He et al. [93]. They are an extension of Fast R-
CNN [62], which added an object mask in parallel with the bounding boxes — when detecting
objects, Mask R-CNN also generates segmentation masks for each instance. In comparison to
Dai’s cascade approach [92], it is much faster. The original code [94] is called Detectron. The
authors presented a new type of layer, RolAlign, which preserves the exact spatial locations
of detected objects. In comparison to previously published RoiPool layers, the mask accuracy
increased by 10 to 50 %. In this approach, each class is predicted independently, and a binary
mask in the form of a polygonal label is created for each object class within every Region of

Interest.

H x W=500x404 backpack suitcase

R

Figure 9 - Masks created with polygonal labels for training a Mask R-CNN network
source: https://bit.ly/3wTxzK4
In 2017, Waleed et al. [95] proposed an improved Mask R-CNN based on a Feature
Pyramid Network (FPN) and a ResNet101 backbone. In comparison to the original Mask R-
CNN, where square inputs were needed, they preserved the aspect ratio of images, generated
the bounding boxes in a different way and decreased the learning rate from 0.02, as in

combination with small batch sizes, causing exploding weights.

In the state of the art around 2022, Mask R-CNN could be used for segmenting objects
like aeroplanes, cars, animals, and people for tracking; however, the precision of masks was
not very big, as visible in the two Figures below. It made Mask R-CNN unusable by itself
(without pre- or post-processing) for applications like Optical Character Recognition (OCR).

39



However, in 2023, the precision has risen greatly, which opened the possibility of applying

this technique to use instant segmentation for experimental letter recognition.
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Figure 11 — Houses segmented with Mask R-CNN: Mapping Challenge converting satellite images to maps [95]
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2.6.2.4 YOLO

Since 2022, as described on the Roboflow blog [97], YOLOVS has also been usable for
instance segmentation. It uses the same polygonal labels as Mask R-CNN for generating
object outlines. In 2023 and 2024, more future YOLO versions followed this trend, further

improving the quality of predicted segmentation masks.
2.7 Dataset augmentation

In order to conduct research, and not just image processing research, a sufficient
amount of good quality data is needed. Machine learning projects usually require a high
amount of training data to be reliable. [50] [54] While working with public datasets, which
usually consist of a large number of images, makes the process easier, there are not always

the data that we need.

When training deep learning models on self-made, custom-created datasets for our own
research, we often face the challenge of obtaining data of sufficient quality and scope. In
some cases, only a limited amount of data is available, and the annotation process (or, for
classification, the process of cutting images to square inputs containing only the object of
interest) is also time-consuming. Under these circumstances, along with optimising network
architecture and training parameters and incorporating regularisation techniques (for
example, adding dropout layers to the model), it is appropriate to consider including synthetic
data that is built upon a foundation of real data and transformed using mathematical or other

techniques.

We distinguish between classical image filtering methods, geometric transformations
(both of which only manipulate the original images) and machine learning methods that

create custom data as close to real data as possible.
2.7.1 Classical methods

2.7.1.1 Keras generator

There is a class called ImageDataGenerator (callable by
tf.keras.preprocessing.image.ImageDataGenerator) in the Keras framework, which allows the

researchers to use several filtering methods and geometric transformations to augment the
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input image dataset. Filtering methods include changes in saturation, colour depth, colour
spectrum, contrast, brightness, focus, blur, and noise inserted into the original images. On the
other hand, geometric transformations are rotating, flipping, stretching, cropping, and
narrowing. Keras also allows for the replacement of parts of images with blank pixels or

noise and the compiling of multiple images in a tile, which consists of random crops.

2.7.1.2 Online platform Roboflow

In January 2020, an online platform called Roboflow was released on the domain
roboflow.com. This platform includes many features useful for machine learning projects,
such as creating project datasets in clouds and callable from notebooks (Jupyter, Google
Colab, Kaggle, etc.). Supported project types are object detection, single-label classification,
multi-label classification, instance segmentation, semantic segmentation, keypoint detection
and “other”. For object detection and segmentation, an annotation tool is available,
supporting both types of labels — bounding boxes and polygonal labels. In the premium
version, Roboflow also offers training DL models on “Roboflow train”. When exporting
datasets for use in external notebooks, the user can choose the dataset format (from the ones

explained in detail in Chapter 2.5.2 — Bounding box formats) and also pick pre-processing

and augmentation methods. The pre-processing options offered are visible in the following

Figure:

Auto-0Ornent Isolate Static Crop Resize Grayscale
Lbjects

" lent |

Byt iy

Auto-Adjust Tile Modify Filter Null
Contrast Classes

Figure 12 - Roboflow pre-processing options

source: www.roboflow.com
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Augmentation options include image level augmentations and bounding box level
augmentations, which are shown in the Figure below. These augmentations, just like the ones

in the Keras generator, are classified as filtering and geometric methods.

IMAGE LEVEL AUGMENTATIONS

Rotation

Grayscale Hue Saturation Brightness Exposure

Blur MNoise Cutout

BOUNDING BOX LEVEL AUGMENTATIONS (@

Crop Rotation Shear

Brightness Exposure Elur MNoise

Figure 13 - Roboflow augmentation optios

source: www.roboflow.com
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2.7.2 Deep learning methods

In addition to classical filtering and geometric methods, there are also augmentation
techniques using artificial intelligence to increase the dataset size. Using these methods, new,
original data are created that take on the features of the original images. Such methods are
Neural style transfer, Feature space data augmentation, such as Variational autoencoders

(VAE) and more, Generative adversarial networks (GANs) and others (Deep Dream etc.).

2.7.2.1 Neural Style Transfer

Using the Neural Style Transfer (NST) method, we work with the terms image content
and style. NST was presented by Leon Gatys et al. in 2015. [98] Image content is defined in
higher CNN layers as a high-level structure of the image (mainly rough outlines defining the
main features) and the style defined in lower CNN layers consists of colours, textures, and
visual patterns. This method is incorrectly, but commonly called “filters” in mobile phone
cameras. Simply put, if you take a photo of a face and make it look like it was painted in
Leonardo da Vinci style or a landscape that you change to look like a painted canvas, this is
NST. This method has been used in the latest research as well. Daru et al. [99] presented a
method of designing drapes with a combination of various binary masks and NST. The part
of the image of a drape where the used mask was black had a different target style than the
part of the image where the mask was white. Wu et al. [100] proposed a Direction-aware
NST with a custom direction field loss function, improving the state of art of generating
mosaic and canvas-like images. Xinyu et al. [101] extended the use of NST to stereoscopic
images in 2018, which was enhanced by Friedrich et al. [102] in 2021 by creating a pipeline
based on a high-resolution voxel representation with the goal of creating complete 3D shapes

with a transferred neural style.
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Figure 14 - Neural Style Transfer by Leon Gatys [98]

2.7.2.2 Feature space data augmentation

Feature space data augmentation (FDA) is a group of methods used to improve
classifier performance. Kumar et al. [103] described different FDA methods as follows.
These techniques first extract the features from the original datasets, and then they generate
new data from the latent feature space. After this process, the synthetic data is added to
training sets in order to improve the classification accuracy. One of the FDA's methods is
upsampling, which creates higher-resolution pictures by applying features learned on smaller
images. Random perturbation adds noise from the uniform distribution. Linear delta is a
simple method of generating new examples by subtracting the difference between two

examples from the same class and combining it with a third example. Extrapolation between
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samples in latent feature space creates new samples as well, and delta-encoder, similarly to
variational autoencoder, consists of an encoder and decoder; at first, it extracts the differences
between two samples within a class (deltas); then, it applies these deltas to create synthetic

data from a different class.

2.7.2.3 Variational autoencoders

Variational autoencoders (VAE) were explored by two independent teams and
published at about the same time by Kingma et al. [104] and Rezende et al. [105]. Chollet
[48, p. 271] describes the key idea to generating pictures as a low-dimensional vector latent

space of representations, where any point can be mapped to a realistically looking image.

VAE is a composition of two neural networks. One of them, the encoder, accepts real
images as input and encodes them into a compressed representation using ANN, usually
CNN. This compressed representation consists of two parameters in the latent space —

z mean and z_log var.

Distribution over latent
space defined by z_mean
Input image and z_log_var

. _.' - '
| Reconstructed

l image

<)

Point randomly
sampled from
the distribution

Figure 15 - Principle of VAE [48, p. 274]
The randomly sampled point, as shown in the figure above, is picked using this

equation.

Z = Zmean + €Xp (z_log_var) * epsilon (27)

where epsilon = a random tensor of small values.

The decoder network maps this z point back to the original image. The points, which

are near each other in the latent space, will generate a very similar output using the decoder.
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The representations in the latent space are highly structured and can be used for smooth

transitions of images.

VAEs have been used in contemporary research. Chadebec et al. [106] increased
accuracy from 80.7 % to 88.6 % by incorporating synthetic data into classification datasets in
the OASIS database. Elbattah et al. [107] used VAE to generate eye-tracking scan paths with

the goal of reducing dataset imbalance.

2.7.2.4 Generative adversarial networks

Generative Adversarial Networks (GANSs), first presented by Ian Goodfellow et al.
[108] also consist of two neural networks. One of them is called the generator, while the
second one is the discriminator (real-fake classifier). Both networks are trained alternately,
each to an adversarial goal. The generator captures the distribution of data and tries to
generate real-like input, and the discriminator estimates the probability of the input to be real
(it comes from the training set) or fake (it was generated). At first, the generator generates
Gaussian noise, which is easily identified as fake by the discriminator, but as the training
goes on, the generated images resemble real images more and more. In an ideal situation, a
Nash equilibrium is reached. It is a state in which no player can unilaterally improve his
strategy to beat the opponent. In the context of a GAN, this means that the generator
generates so well that the discriminator has exactly a 50% chance of identifying the input

correctly.

GANS, like the VAESs, consist of two neural networks. However, unlike VAE, they do
not create structured, continuous latent spaces. GANs have the potential to produce highly
realistic images, whereas the images from the VAE are merged, because of the continuity in
the latent space. Géron [51, p. 591] states that although VAEs have been very popular for a
long, GANs have already surpassed them with their capability to create more realistic images.
It is, therefore, advisable to consider what data we are augmenting before choosing the right

method.

Contemporary research has introduced improvements to basic GANs. Deep
Convolutional GAN — DCGAN [109] presented the following improvements in the

architecture and guidelines for a more stable network:
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e Replacing pooling layers with strided convolutions in the discriminator and
fractional convolutions in the generator

e Using batch normalisation

e In deeper architectures, removing fully connected hidden layers

e Using ReLu activation in all layers of the generator, except for the last layer
with Tanh

e Using LeakyReLu in all layers of the discriminator

Progressively growing GAN by Karras et al. [110] present a novel approach to train
low-resolution images at first and progressively increase them to high resolution, usually up
to 1024 x 1024 px. In their paper, the discriminator network is called “the critic”. The
principle of the upscale lies in the smooth adding of layers. The layers operating in higher
resolutions are treated like a residual block, in which layers have small weights linearly
increasing from 0 to 1. Ledig et al.’s Super-resolution GAN (SRGAN) [111] is focused on

creating highly detailed textures when upscaling the generated images.

Recent use of GANs in contemporary research projects includes augmenting datasets of
palmprint [112], improving cancer classification on gene expressions data [113], augmenting
X-ray security images for threat detection [114], improving liver lesion classification with

synthetic data [115] and many more.

2.8 Optical Character Recognition

Optical Character Recognition (OCR) systems are among the most complex
applications of computer vision and image recognition, in addition to the scene understanding
required for self-driving vehicles, for instance. It is the process of classifying patterns
corresponding with alphanumeric or other characters from a digital photograph or PDF scan.
[116] This recognition is done in several, at least three, basic steps - segmentation of text
against the background and individual parts of the text, feature extraction and feature

classification. [117]

Holistic OCR systems contain 9 stages [118], from the actual acquisition of image data

to the conversion of text into machine-readable format:
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1. Scanning - digitising physical documents (papers, photographing historical
artefacts - reliefs, vases, funerary steles, etc. inscriptions)

2. Local segmentation, which distinguishes the text parts of a photograph from
graphics

3. Optional pre-processing, in which noise is reduced, text is rotated to the correct
position, the image is normalised, compressed

4. Segmentation, also called binarisation - separation of non-text and text parts,
and further segmentation into individual characters or parts of characters

5. Representation - global, statistical, or geometric representation of characters

6. Feature extraction - in current OCR systems, template matching is most
commonly used based on the extracted distribution of points identified in an
image

7. Training and recognition - creating templates of individual features, fixed or
elastic, statistical techniques, cluster analysis, use of fuzzy logic or artificial
neural network

8. Post-processing - detected features are composed into words compared with a
dictionary, and modified to make sense

9. The final step is the output text itself in a machine-readable format, which can
be further manipulated, e.g., using NLP - natural language processing systems

(e.g., translating into other languages, creating automatic text summaries, etc.)

Current research in OCR [119] combines multiple systems in a hybrid solution for
better recognition, which reduces the error rate when using only one OCR algorithm. Post-
processing methods are being improved to account for different types of errors and produce
automatic corrections [120], and systems are being developed for languages that were
previously unavailable, such as Arabic [121], Hindi [122], Japanese [123], and many more. In
a comparative study of current OCR systems (here, regarding Latin OCR) from 2021 [124],
the problems encountered by these systems in common situations are mentioned. One of them
is the problem of recognising letters on a scanned document, in case the letters are distorted,
blurred or parts of the characters are missing completely. Another problem is font
differences, which create the need to extract multiple different features for each character

class or to use multiple templates and elastic templates for character classification.
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At the time, a common way to classify a character in OCR is using elastic templates.
Contemporary research uses neural networks for text segmentation, like in case of car license
plate reading [125], where Mask R-CNN serves to segment the text area, and it is forwarded
to Terrasect OCR for transliteration. Only one pioneer research called “Rosetta” [126]
proposes a convolutional approach because it uses neural networks for both text localisation
and text recognition. Rosetta is used to analyse text in so-called “memes”, which are

uploaded to the social media Facebook every day.
2.9 Research gap

The exploration of neural network architectures used for object recognition in images,
image segmentation and augmentation of learning sets, applied to recognising historical
alphabets is best done with real-world examples. It is not possible to define one correct
approach to analyse historical scripts, as there are many types (alphabets, logographic scripts,
ideographic scripts, syllabaries and many more) and each of them is unique and needs to be
approached respectively. Based on the knowledge described in the literature review, several
research gaps were identified. In this dissertation, an effort is made to obtain a general
approach for developing improved neural networks for the purpose of OCR algorithms of

historical scripts specific to each type of script.

At the time of writing this dissertation, there were no detectors and classifiers for the
characters of the Palmyrene alphabet. Therefore, it was possible to build a custom dataset of
the characters used to write Palmyrene Aramaic, explore classifier architectures and optimise
them, try different augmentation methods, construct a Generative adversarial network and
train it to augment the data, as well as start to work on a complete OCR system, incorporating
segmentation, and lastly, connect it with a dictionary. Completion of Palmyrene OCR,
namely the dictionary part, will be finished after publishing this dissertation, but it’s

appropriate to mention it now, as my team and I are already working on it at the time.

In addition to analysing the Palmyrene alphabet, together with a team from Israel, we
decided to explore the possibilities of detecting wedges (otherwise known as strokes) in
cuneiform using only object detection algorithms, as this approach was not used before. As

cuneiform is a logo-syllabic script, in this case, not the whole vowels, but their parts were
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being detected. In the course of this research, I was able to construct different object

detection algorithms and test their properties.

During the cuneiform research, we encountered the problem of calculating the
confusion matrix for detectors in the absence of ground truth labels. For this reason, I propose

a modification of it and present it here in chapter 3.2.1.

3 Commentary

In the Attachment section, five papers are presented about the topic of creating
Palmyrene OCR and two papers about detecting strokes in cuneiform script. One article is

mentioned but not yet published; therefore, it is not attached as full text.

3.1 Palmyrene Aramaic analysis using computer vision algorithms

In the first, conference article [1] (Attachment 1), the Android application incorporating
two classifiers was shown. The first classifier takes an EMNIST-like Palmyrene character,
which is drawn on the mobile screen; optionally, the second classifier takes a photo of one
Palmyrene character (which needs to be taken by the mobile phone camera). The respective
classifier suggests the top three classes with the highest confidence scores; the user picks the
character in accordance with the Unicode table character pictured next to the confidence
score and saves it to buffer. This way, the user can re-write (or take pictures letter by letter)
and classify every letter in the Palmyrene inscription and can then export it as text. The
architecture used in this version of the app was efficient lite0. The results of hand-written
classification reached 80.2% F-score, while the photographic classifier reached only 71.96%.
There were three authors in this paper. I created the dataset and the classifier and conducted
tests. Mr. Franc created and debugged the mobile application, and Mr. Tyrychtr provided

professional guidance while writing the article.

The second, journal, article [2] (Attachment 2) presents a custom CNN architecture,
which was obtained by testing different layer combinations and training parameters. An
optimal architecture for the classification of hand-written inputs was selected, and the
accuracy increased from efficient lite0’s 68.93% to 98,21%. the hand-written Palmyrene
character classification task was complete. However, it was not suitable for classifying photos

of characters. I created the training scripts in Keras and conducted the tests of architectures
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and classification results tests. Mr. Franc updated the mobile application, and Mr. Vesely

helped with the methodology and article review.

In the third, conference, article about the topic of Palmyrene OCR [3] (Attachment 3),
we present GAN augmentation methods used for expanding photographic datasets. However,
as the improvement was not sufficient for practical use, therefore, we explored more options,
that are presented in a journal article, for which we have recently received reviews and are
editing it in accordance with the reviewer’s comments Mr. Franc created the GAN training
and generating scripts, I did the data hand-sorting and classifier testing. Mr. Vesely suggested

methods and reviewed the article.

In 2022, we extended our research by presenting the Palmyrene OCR web application

available at https://ml-research.pef.czu.cz, which, at the time of creation offered the same

options as the mobile application - to either draw characters by hand or alternately take a
picture of one character in Android application, annotating characters in an uploaded photo of
Palmyrene inscription. Mr. Svojse developed the web application, I provided extended
datasets, classifiers trained on them and conducted tests, and Mr. Franc ensured the operation
of the web server. The article related to this topic has not yet been published and, therefore,

cannot be referenced, but the web application is already in use.

In the conference article [6] (Attachment 4) published by Springer, the planned
capabilities of the Palmyrene OCR web application were described using a diagram, which
was, along with a part of a single-class segmentation dataset and methods for further steps,
presented in the MOBA workshop of CAISE conference. The dataset was obtained and
annotated by me as well as the research plan, and Mr. Pavlicek edited the diagram. Mr. Franc

helped with the manuscript preparation. I prepared the methods.

In the end, the methods proposed in the conference articles were supplemented by an
additional method, which was multi-class instance segmentation. With the help of new
scientific knowledge and experiments, we have found that it is not necessary first to detect
individual letters and then categorise them into the correct classes, as was the original plan,
but that it is possible to segment and categorise at the same time. In fact, during 2023, the
segmentation algorithms were further improved, and YOLOVS could be trained for multi-
class instance segmentation. In a 2024 paper published in CMES [7] (Attachment 5), we

performed a thorough analysis that involved a substantial expansion of the dataset, with input
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from humanities professor Alexey Lyavdansky of the Russian HSE University, who, for
photographs of the Palmyra inscriptions I collected from public and non-public sources,
verified which letters were visible in the photographs and provided transcriptions for
inscriptions that were not publicly available. We trained four models - for one and multiple
classes - on two algorithms and developed a custom algorithm for line processing and letter-
in-line comparison directly from the detected segmentation masks in the form of polygons.
Mr. Svojse and Mr. Franc also published this module to our web application ml-research. Mr.
Novak helped with manuscript formatting and administration, and Mr. Vesely helped with

manuscript preparation and methodology description.

Another article, which is also part of the research, is not attached to this dissertation as
it is in preparation. In this article, various GAN and SRGAN possibilities and training
methodologies are explored, presenting the optimisation of GANSs for classification data
augmentation and upscaling images on specially downscaled images using the Hierarchical
Collaborative Downscaling (HCD) method published in 2023 [127]. The outcome of this
study suggests that synthetic data can play a crucial role in enhancing the performance of
computer vision algorithms, with potential applications extending beyond the scope of the
study to other areas of research and development in computer science and digital humanities.
I helped prepare the data and train multiple GAN networks constructed by Mr. Franc. Ondfej
Svojse published the relevant content on the ml-research web application, and Mr. Vesely

provided methodological guidance and helped with manuscript preparation.

3.1.1 Palmyrene alphabet research outcome

Over the course of the past few years, computer vision algorithms have experienced
rapid development, enabling a wide variety of applications to be created. One such
application is a novel way of developing OCR, which we have researched for a number of
years. Through ongoing experiments and using the most contemporary algorithms in each
phase of the research, we have achieved results that allow us to read the characters of the
Palmyrene alphabet directly from photos and obtain the transcriptions in either a mobile or
web application. A foreign humanities professor with the ability to read and understand the
Palmyrene texts has joined our team and is invaluably helping us with the process. One last
step for this research to be complete is to incorporate the datasets in standard OCR algorithms
like Google Tesseract and create an NLP algorithm to put the predicted characters in the

context of words and sentences.
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3.2 Cuneiform stroke detection

Concerning cuneiform stroke detection, two papers are attached to this dissertation. The
first one, a conference article [4] (Attachment 6) presents detecting horizontal strokes within
images of cuneiform tablets and a journal article [5] (Attachment 7) presents comparing
different computer vision algorithms and also some additional tools that we created to detect
the strokes successfully. The dataset was processed by Mr. Franc, who also prepared the
Detecto algorithm for training in a custom notebook and annotated by partners from two
Israeli universities — Shai Gordin from Ariel University and Avital Romach from Tel Aviv
University. They also helped us with the texts about cuneiform in both articles. In this
research project, I served as a project manager and was responsible for the preparation and
training of the YOLOVS5 network, programming several utilities, and Mr Cejka participated in

training the R-CNN network. Mr. Pavli¢ek also participated by programming more utilities.

The final outcome of the cuneiform research project was not deployed in any web
application and is currently only available on GitHub. The topic was further explored by E
Stotzner et al. [128], adding all other types of strokes to the detection, allowing the research
to be put into practical use.

According to Google Scholar on the 18™ of April 2024 [129], the SPML conference
article [5] has been cited 3 times by other author teams (E Stotzner et al., V Yugay et al. and
A Bucciero et al.) who followed the development of detecting cuneiform signs directly from

2D photographs.

3.2.1 Confusion matrix used for object detection algorithms

During the evaluation of the cuneiform stroke object detectors, we encountered a
problem with the standard algorithm evaluating methodology — counting mean IoU and
deriving the confusion matrix from it [83] — as some of the testing data was not labelled.
There was a need to establish a method that could be used in detector evaluation cases where
few or no ground truth labels are available. Therefore, an altered version of the confusion
matrix was suggested. Confusion matrix is traditionally used to evaluate classifiers or used on
an object detection algorithm, if it is derived from IoU as described in chapter 2.5.4.1 of this
dissertation.

The method of altered confusion matrix construction was applied in the 2024 article in

Digital Humanities Quarterly [6].
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3.2.1.1 Suggested method to constructing confusion matrix

In case of missing IoU, True Positives 7P, False Negatives FN and False Positives FP
are counted as follows, and a duplicity or multiplicity D is added:

e The object of interest or its part is bounded by a box.
o Itis denoted as 7P.

e The object of interest or its part is not bounded by a box.
o Itis denoted as FN.

e Multiple boxes bound the same object or its part.
o The number of boxes b-1 are denoted as D.

e A box bounds an area, where there is no object of interest or its part.
o Itis denoted as FP.

e TN cannot be counted; therefore, it is set to 0.

o TN=0.

Standard metrics such as precision p, recall s and F-score can be calculated using the
matrix. The number of multiplicities D can be ignored in calculations as bounding boxes with
a high overlap can be removed when a threshold for overlap is set. However, it can serve as

additional information when evaluating the algorithm.

3.3 Cascade-style approach to creating historical OCR systems

In Chapter 8, a classical 9-step holistic approach to creating OCR algorithms, which
consists of scanning, local segmentation, pre-processing, binarisation, representation, feature
extraction, training and recognition, post-processing, and finally, getting the text in a
machine-readable format, was presented. However, by applying the latest knowledge in the
field of computer vision and using previously unavailable or imprecise algorithms, which
have achieved much higher success rates in recent years, the number of steps to create an
OCR algorithm can be significantly reduced. Although there are different approaches of
reading historical scripts, there are many connecting elements that can be summarised in a

cascade-style approach. The 9-step process can be simplified to a 5-step process.

3.3.1 Data acquisition

The quality and quantity of the data acquired directly impact the algorithm's ability to

generalise and accurately recognise text across different fonts, sizes, and styles which are
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present when processing handwriting of historical documents. Different digitising processes
can obtain data, but the easiest one is collecting existing photographs of texts or taking new

pictures.

3.3.2 Annotation

With the use of manual annotation of whole letters in case of alphabets, or parts of
characters used to write historical language, such as cuneiform, we prepare a dataset for
training an instance segmentation algorithm that incorporates the previously mentioned steps
- local segmentation and pre-processing. An optional step in this step includes using GAN

networks to generate more training data if too little is available.

3.3.3 Multi-class instance segmentation

Multi-class instance segmentation sums up the binarisation (segmenting text and non-
text areas), representation, feature extraction, training, and recognition from the holistic
approach in just one step, as it directly detects non-text and text parts and recognises whole

letters or components at once and results in a list of letter.

3.3.4 Post-processing

This step involves techniques such as sorting characters into rows and columns and
combining parts of characters into syllables in non-alphabetic scripts.

Advanced post-processing can also be understood as spell-checking, grammar
correction, and context analysis to improve the overall accuracy and readability of the
extracted text. Additionally, post-processing may also include error correction mechanisms to

prevent any misinterpretations or inconsistencies in the recognised text.

3.3.5 Textin machine-readable format

Converting the recognised text into a machine-readable format is the final step in the
OCR pipeline. This step requires working with a dictionary in the given language and enables

future text processing such as translation or summarisation.

3.4 Next steps

Future research plans are presented. In order to complete the development of the OCR
algorithm in Palmyrene Aramaic, advanced post-processing techniques need to be applied to

avoid recognition errors, and a dictionary needs to be developed to understand the transcripts
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obtained by image processing fully using instance segmentation. Of course, we are also
continuously working on annotating more available images with Palmyrene inscriptions to
refine the segmentation results as more accurate results will make post-processing easier.
Other research teams have already followed up on the processing of cuneiform script
from 2D photographs, yet if our Israeli partners are interested in collaborating on the next

steps, we would be happy to participate in the research with them.

Conclusion

The beautiful aspect of science is that there is always something to improve and
develop, and new knowledge allows us to educate ourselves and educate others continually.
Over the course of my PhD grant projects, I have researched a large number of neural
network types and architectures that are used for image processing, such as classification,
object detection, dataset augmentation and segmentation. I explored their capabilities and
limitations in relation to the detection, augmentation, and classification of historical fonts,

both alphabet and logo-syllabic.

Together with several research teams, I have developed a horizontal stroke detector in
cuneiform script, a classifier, a segmentation algorithm, and a generator of Palmyrene
alphabet characters and proposed a modified method for computing the confusion matrix

when no ground truth labels are available to calculate IoU.

I suggested and published a novel cascade approach to OCR creation using
Convolutional Neural Networks. It both simplifies and combines the steps of a holistic OCR
development approach using state-of-the-art image processing algorithms. This approach is
generally applicable to the development of algorithms processing various other scripts, be

they historical or contemporary.

I have gained knowledge in computer vision that I will further enhance in other
research or commercial projects that I am working on now and will work on in the future. I
trust that the results presented in this dissertation will help as a baseline for research by other

teams working on the development of processing historical scripts.
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Abstract. The article presents the problem of developing mobile software for
classification and automatic transliteration of historical alphabets to Latin alphabet
using OCR Computer Vision algorithms and is presented on Palmyrene Alphabet.
Our suggested solution of semi-automatic transliteration of historical alphabets
speeds up and simplifies the process of ancient text analysis and makes reading his-
torical alphabets available to the public. We created a mobile application template
for field use and proved the functionality on our own photographic and digitized
hand-written datasets of Palmyrene letters, using a MobileNet Artificial Neural
Network for character recognition. Such an application helps archaeologists with
a faster character transliteration of newly discovered, archived, but untranslated
tablets, columns etc., and for checking hand-transliterated texts.

Keywords: Artificial intelligence - Classification - Historical alphabet -
Software development

1 Introduction

The technology of Optical Character Recognition, commonly known as OCR, has devel-
oped rapidly in the last years, and its applications can be found in various areas of human
activities. Applications vary from getting text from scanned documents to automatic
registration plate-number recognition. However, not all alphabets have this technology
available, and transliteration has to be done manually.

Archaeology, like any other human activity and research area, can profit from such
technology. There is a large number of historical documents in different alphabets that
archaeologists need to analyze, rewrite by hand to paper and then translate, one of which
is Palmyrene.

2 Theoretical Overview

2.1 Image Classification

Artificial Intelligence is an area, which first appeared in the 1950s. It includes a wide
area of computer science tasks that don’t use rules and data to get answers, but uses data
and answers to create rules [1].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Silhavy (Ed.): CSOC 2022, LNNS 502, pp. 34-45, 2022.
https://doi.org/10.1007/978-3-031-09076-9_4
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The input data points are taken as a training set, and the learning algorithm (also called
fitting algorithm) is trying to map these inputs to the expected outputs, by alternating
neuron weights and keeping the same activation functions in the network during the
process. This process is called learning, and the quality of learning can be measured by
computing error — the loss. Loss can be simplified as the difference between predicted
and real outputs. In Artificial Intelligence terminology, the trained network is called a
model. It consists of network architecture and trained weights [1].

Image classification is using deep learning architectures with Convolutional Neu-
ral Networks. CN Networks accept input tensors in the shape of (image_height,
image_width, image_depth). Deeper in the network the dimensions are lower and lower,
since the Convolution operation is reducing the image to local connections by using
feature maps. The last but one layer of CNN needs to be flattened by using the Flatten
layer. The output is provided by a Dense layer, which returns an integer — index of class,
where the image is predicted to [1].

The classification success rate can be measured by standard metrics. They are called
precision, recall, F-measure and accuracy and are explained in Methodology [2]. These
metrics are calculated usually on the training set, which is a subset of images, which
have not been used during the training.

2.2 OCR

As early as the 19th century, the first attempts to read letters by machine were recorded,
until a technology reading exactly one character was developed [3]. In the 19™ century,
OCR was already widely used and was getting known to the general public [4]. In 2020,
OCR was even used for biometric identification with cross-entropy fitness function to get
the smallest squares [5]. Among the latest advances in this area is a specially developed
Artificial Neural Network called AutOCR. In comparison to other applications, there
is an automated process of training parameter tuning, and the latest research of OCR
applies LSTM (Long Short-Term Memory) layers to neural network architectures for
processing words — sequences of characters [6].

Although the technology for reading characters already exists, there is still space
for experiments with the optimization of a suitable neural network architecture, special
for historical alphabets recognition from either hand-written sources or directly from
photographic records.

2.3 Historical Alphabet Digitisation Including Palmyrene

There are multiple researches specialized in historical alphabet character recognition,
such as Persian [7] or Bangladeshi [8], as well as hand-written transliterations of
cuneiform [9]. However, there is still currently no Palmyrene transliteration available.
At present, there are a large number of published texts in Palmyrene Aramaic, writ-
ten in a special alphabet, that is similar to but slightly different from Aramaic at the
same time. Palmyrene was used in years 100400 A.D. in the Syrian city of Palmyra
(otherwise called Tadmur) and in its surroundings. This language was derived from clas-
sical Aramaic but uses its own dialect and alphabet. Palmyrene Aramaic was spoken in
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western parts of Syria in the beginning of the first century, on the other hand in eastern
parts classical Aramaic was spoken.

The study of texts in Palmyrene Aramaic contributes not only to Palmyrene studies,
but also Semitic and Biblical studies, the study of ancient history and art [10]. Ones of
the most extensive anthologies were published in years 1996 and 2001 [10, 11].

In 2010, a standard coding for Palmyrene letters was proposed and adopted [12], and
it is currently a part of an extended Unicode character table. The Palmyrene alphabet
contains 32 characters, 10860-1087F Unicode [13]. The script is written horizontally,
right to left, letters are not divided by a blank space, apart from “y” there is no wovel, only
consonants. Writing numbers is similar to the Roman way, but there are only characters
for number 1, 5, 10 (also used for hundreds) and 20. Numbers 2, 3 and 4 are depicted as
a multiple of 1.

Currently, there is a research gap in the field of automatic character reading of
historical alphabets and transliterating them to Latin alphabet, part of it means there is
also no Palmyrene alphabet transliterator available yet.

2.4 Android Software Development

Android is an operating system based on Linux, mainly focused on mobile devices. Its
apps are developed in Java mainly using Android Studio as IDE. There are also other
multi-platform development tools, which can be used for Android as well.

A set of basic libraries that are included in each version of Android API is upgraded
with every Android system update and some methods in these libraries are added and
improved.

Image classification is not included in standard Android API libraries. Premade
classificators using CNN are available in Tensorflow Lite. The most common models
for image classification use TFLite MobileNet. Current research recommends using
efficient_liteO network [14]. The architecture of this model is visible in Fig. 1. The
dropout layer randomly sets some neuron weights to O to prevent overfitting.

Layer (type) Output Shape Param #
hub_keras_layer viv2 (Hubker (Nome, 1280) 3413026
dropout (Dropout) (None, 128@) ]

dense (Dense) (None, 28) 35868

Total params: 3,448,892
Trainable params: 35,868
Non-trainable params: 3,413,024

Fig. 1. MobileNet efficientnet_lite0 model summary

3 Objective

OCR technology is still being developed and improved and currently there is no tool
that would help researchers or the general public transliterating Palmyrene characters to
Latin.
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The main objective of this research is therefore to create a mobile application using
artificial intelligence methods (OCR) for historical character classification and translit-
eration and verify the research on the use case of Palmyrene alphabet. For performance
tests, we also need to create two dataset — hand-written and photographic and make a
tool for it. The required test accuracy is above 70% in order to consider the classificator
satisfactory.

The target group of users are archaeologists, who would use the software for faster
Palmyrene Aramaic texts transliteration, the secondary focus group are other researchers
and people outside the scientific community that could use the transliteration for educa-
tional purposes. The Android application can also be modified if another historical alpha-
bet model is trained. Therefore, it can be used for further semi-automatic transliteration
of any alphabet.

4 Methodology

4.1 Acquiring Data

For hand-written dataset creation, we created a software tool called “Write Character”
for computer hand-writing by modifying AxelThevenot’s Python-Interface-to-Create-
Handwrittendataset” tool available at Github [17]. It creates a dataset, which contains
the same number of characters in each class.

In order to get a photographic dataset, a sufficient number of images containing the
required script, such as the one in Fig. 2, needs to be obtained and pre-processed. If there
are not enough characters available from the photos, the remaining count is filled by an
imitation of sandstone tablets — writing letters to sand.

For the acquisition of such photographs, our team established a cooperation with
two museums — Musée du Louvre in Paris [15] and Virtual Museum Of Palmyra [16].
Both museums provided images of tablets with Palmyrene inscriptions.

The image pre-processing consists of cutting input images to squares, each square
containing one letter and sorting them to folders. If images have low contrast, a gradient
edge highlighting method should be used.

4.2 Picking Architecture and Training OCR Model

One of the current recommended neural networks used in Android applications is TFLite
MobileNet efficient_liteO [14]. The final activation function needs to be logistic, as this is
a multiple category classification. Using optimisation methods like dropout is advisable.

4.3 Model Evaluation

For model evaluation, following measures are used, two counted from the classification
results, one is derived and one is dependent on network output [2]:
Precision

TP

- 1
TP + FP )

p
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Fig. 2. Example of input image containing Palmyrene script, Antiquités orientales, AO2204, 08-
516087, Paris, musée du Louvre, photo (C) RMN-Grand Palais (musée du Louvre) - © Franck
Raux, Dalle portant une inscription funéraire palmyrénienne

Recall (sensitivity)
TP

§= — )
TP + FN
Quality of algorithm (F-measure)
2. (s-
p_2 0GP 3)
s+p

where

TP = true positives, the number of correctly classified objects as positive.

FP = false positives, the number of incorrectly classified objects as positive.

FN = false negatives, the number of incorrectly classified objects as negative.

If s = p, then F-measure = s = p.

The values of TP, FP, FN as well as TN (true negatives, the number of correctly
classified objects as negative) can be written in a 2-dimensional matrix called “confusion
matrix” [2]. If there is just one class, i.e. the image contains the object of interest or not,
there is a confusion matrix with 2 columns and rows as visible in Table 1.

Table 1. 2-dimensional confusion matrix for 1 class classification

Actual/predicted Positive Negative
Positive TP FN
Negative FP TN

For multiclass classification, the confusion matrix has as many columns and rows as
there are classes, as visible in Table 2, with actual values in the column and predicted
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values in the row as well. The TP, FN, FP and TN values are calculated from the matrix
as a sum of corresponding values.

Table 2. 2-dimensional confusion matrix for 4 class classification

Actual/predicted | Class 1 Class 2 Class 3 Class 4
Class 1 TP for class 1 FN for class 1, FN for class 1, | FN for class 1,
FP for class 2 FP for class 3 FP for class 4

Class 2 FN for class 2, TP for class 2 FN for class 2, FN for class 2,
FP for class 1 FP for class 3 FP for class 4

Class 3 FN for class 3, FN for class 3, TP for class 3 FN for class 3,
FP for class 1 FP for class 2 FP for class 4

Class 4 FN for class 4, FN for class 4, FN for class 4, TP for class 4
FP for class 1 FP for class 2 FP for class 3

Confidence Score

The confidence score indicates the ratio of correct predictions in percentages. It is cal-
culated separately on training, validation and testing dataset using “accuracy’ as scoring
method during training and predicting. The testing accuracy shows how the model gen-
erally performs on images outside of the training set. It is calculated during the training
and evaluation in the code.

4.4 Application Development

For the mobile application, we use a wide set of Android libraries, i.e. a native library
android.graphics, which contains tools that handle standard graphic operations such as
picture resizing. It is needed to deliver images from drawing or camera inputs in specific
format to image classificator, which accepts explicitly 224 x 224 x 3 inputs to the first
convolutional layer in accordance with MobileNet architecture. These parameters, along
with normalisation methods, authors information and license, are determined in model
metadata.

For image classification, the trained models in.tflite format are loaded. The input
image is transformed, analysed and the output category with confidence score will
be returned and displayed in the form of a table with three results with the greatest
confidence.

5 Results

5.1 Dataset Creation Results

The “Write Character” tool has been used for the creation of a dataset consisting of
56207 handwritten images belonging to 28 classes. A separate class for number 5 “ y”
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Table 3. Palmyrene system font “Palmmene” with transcription to Latin

Palmyrene Latin Transcription to Latin
N Aleph ‘A
| Beth B
IN Gimmel G
Y Daleth D
A He H
1 Waw \%
\ Zayin V4
H Heth KH
6 Teth T
~ Yodh Y
| Kaph K/C
Y Lamedh L
N Mem M
9 Final Nun M
A} Nun N
o) Samekh S
Y Ayin ‘/E
a3 Pe P
H Sadhe TS
i) Qoph Q
4 Resh R
1Z Shin SH
n Taw TH
a left <
© right ->

) 1 1

] 2 2

n 3 3
i 4 4

b 5 5
— 10, 100 10, 100

w
[\
(e
[\
(=]
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: zayin — (0/2000)

Fig. 3. User interface of the dataset handwriting tool

has been left out, as the character resembles very highly to the character ayin * ¥”, the
used system font was “palmmne” (Table 3).

We created the photographic dataset by cutting photos provided by museums and by
creating sandstone tablet imitations; each class contains roughly 440 photos. The total
number of photos was 12351 images (Fig. 4).

Fig. 4. Example of data from photographic dataset: letter Aleph

5.2 Model Training

The training of both models was conducted for 5 epochs using the graphic card Nvidia
GeForce GTX 1650. The train/test split was 90% for training and 10% for testing. We
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used the library tflite-model-maker for the efficient_lite0 model creation, without any
further alteration of the architecture.

Photographic Model
The training accuracy improved from 0.4328 in the first epoch to 0.7523 in the last
epoch. The testing accuracy was 0.7712.

Hand-Written Model
The training accuracy was very high even after the first epoch, it reached 0.902, and in
the last epoch it rached 0.993. The testing accuracy was 0.977.

Model Evaluation

The testing set for evaluating both hand-written and photographic models consisted of
112 images (4 of each class). We conducted the test directly in the developed Android
application, we drew the images in the “draw letter” module and took photos of new
sandstone imitation data, manually checked it, and summarised the prediction results
in confusion matrices and shortened them to basic confusion matrices, as if it was a
true/false classification, and divided the false predictions between FN and FP. The
confusion matrices are visible in Table 4.

Table 4. Shortened confusion matrices of hand-written and photographic models

Actual/predicted Positive Negative

Positive TPw = 81 FNgw =20
TPp = 68 FNpw =27

Negative FPyw =20 TNgw =0
FPpw =27 TNgw =0

The calculated precision, recall and F-values are 80,2% for the hand-written set and
71,96% for the photographic set. The most common errors were false positives in the
class “pe”.

5.3 Android Software Template and Palmyrene Transliterator

Our team created a software package — an Android application template, implemented
on the use case of Palmyrene letters, using image processing libraries as well as
org.tensorflow.lite. The module for image analysis uses TFLite MobileNet architec-
ture. There are 2 main usages — drawing a letter and analysing it with the first MobileNet
model for hand-written letter classification. The second one starts with taking a pic-
ture, and the camera input is fed into the other MobileNet model and returns the same
output — three classes with the highest confidence score (Fig. 5).
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Fig. 5. Mobile application user interface

6 Discussion

In relation to a resemblance of some Palmyrene letter signs, the results of the image
classification were satisfactory, as the quality of the algorithm reached 80,2% for hand-
written dataset and 71,96% for photographic dataset. The difference is caused by the
number of images in the training dataset as well as the difficulty of the input. While
hand-written characters are only black and white, the photos vary from black to white
in different shades of grey and there is much more noise in the pictures.

In GigaMesh, the analysis of 3D scans of cuneiform tablets has been conducted, and
the character extraction success rate has not been published in the article [18].

Also the recognition of handwritten cuneiform vowels published by Yamauchi [9]
has not shown any tables with classificators results.

The character recognition of Ghosh et al.’s model of Bangladeshi signs reached
96.46% testing accuracy on MobileNet [8], and Sazal et al. reached 90.27% accuracy
on a 60-class model of hand-written Bangladeshi script [19].

From the artificial intelligence point of view, different authors have used object
recognition to achieve other tasks. Cho Junghwan et al. has reached about 97% accuracy
on GoogLeNet network architecture (Inception v1) using a dataset of about 4000 very
high-quality images of CT body scans, and the decrease rate for lower number of images
has been described there accordingly [20]. A smaller success rate from this research
has been reached in Great Tits recognition from Smart Nest Boxes using YOLOv3
architecture, where the F-measure reached 83% due to difficult object detection [21].

This fact indicates that the results of Palmyrene letter classifications are satisfactory
(reached above 70% of F-measure as specified in the initial criteria) and are compara-
ble with other authors’ works, but still have room for improvement, as the Palmyrene
alphabet has some letters, which are very similar to each other.
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7 Conclusion

We created a software tool, which uses artificial intelligence (OCR) for semi-automation
of historical alphabets transliteration and proved it on Palmyrene Aramaic script. The tool
consists of several components — dataset drawer, classificator training and an Android
mobile application using the trained TFLite MobileNet models for field use. This appli-
cation can also be used as a template for other historical alphabets, if the models are
swapped.

Our tool can greatly speed up the process of analyzing ancient texts in different
historical scripts and enable reading such signs for the general public for educational
purposes.

Although the results have been satisfactory, further experiments with network layers
should be conducted in order to improve the testing accuracy even more, and a photo-
graphic dataset of Palmyrene letters can be expanded, as the accuracy was lower than
with the hand-written dataset.

Acknowledgment. This article was created with the support of the Internal Grant Agency (IGA)
Faculty of Management and Economy, Czech University of Life Sciences in Prague, 2021A0004 —
“Reading the characters of Palmyrene alphabet using artificial intelligence tools”.
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Abstract: This article presents the problem of improving the classifier of hand-
written letters from historical alphabets, using letter classification algorithms and
transliterating them to Latin. We apply it on Palmyrene alphabet, which is a
complex alphabet with letters, some of which are very similar to each other. We
created a mobile application for Palmyrene alphabet that is able to transliterate
hand-written letters or letters that are given as photograph images. At first, the
core of the application was based on MobileNet, but the classification results were
not suitable enough. In this article, we suggest an improved, better performing con-
volutional neural network architecture for hand-written letter classifier used in our
mobile application. Our suggested new convolutional neural network architecture
shows an improvement in accuracy from 0.6893 to 0.9821 by 142 % for hand-written
model in comparison with the original MobileNet. Future plans are to improve the
photographic model as well.

Key words: artificial intelligence, classification, historical alphabets, mobilenet, com-
puter vision
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1. Introduction

1.1 Historical alphabet digitization including Palmyrene

Many researches are focused on character recognition of letters from historical
alphabets. These include Persian [5], Bangladeshi [3] and cuneiform, which is
transliterated by hand [19] and photos of these transliterations are classified.
Until recently, there was no Palmyrene transliteration available. There is a
large number of Palmyrene Aramaic memorabilia, which is written in Palmyrene
alphabet. It is similar to classic Aramaic with some differences in the alphabet and
dialect. This dialect was used in western parts of Syria, and classic Aramaic was
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spoken in the eastern parts. This script was used in the nearest surroundings and
inside the Syrian city of Palmyra (also called city of Tadmur) in the years 100-400
A.D.

Translating Palmyrene texts is contributing to the study of ancient art and
history, as well as Palmyrene and Biblical studies. The largest anthologies were
published in 1996 by Hillers et al. [7] and in 2001 by Taylor et al. [15].

Palmyrene font became part of Unicode in 2010 [1] when the coding for Palmyrene
letters was proposed. The alphabet consists of 32 characters in the range 10860—
1087F in Unicode [12] (Palmyrene, 2010). Apart from “y”, there are only conso-
nants in the script. The alphabet is read from the top right to left corner; words
are not divided by a blank space. As for numbers, there are only four characters,
which mean 1, 5, 10 (or 100) and 20.

1.2 Image classification on mobile devices

Android applications are developed mostly using the IDE Android Studio and in
each version of IDE, a set of standard libraries is added and some of the existing
ones are updated. Among standard Android API libraries, image classification
is not included. The TensorFlow documentation website [17] recommends using
convolutional neural network MobileNet for image classification on mobile devices.

Current research [4] recommends using MobileNet version efficient_lite0. It was
introduced by Tan and Le in 2020 [16] and is also presented in Sonawane’s paper [14]
in comparison with other architectures.

1.3 Android software template and Palmyrene transliterator

In our research we suggest a mobile software tool for automatic character reading
of historical alphabets and transliterating them into Latin alphabet. This tool
called “Palmyrene Alphabet Transcription” has a potential to help to speed up the
process of processing archived but not transliterated and untranslated documents
or can be used directly in the field by archeologists.

Our tool is an Android application that can serve as a template for other alpha-
bets as well. The two main use cases of our tool are hand-written letter analysis
and letter analysis from photo.

In the first one our tool asks the user to draw a letter on the screen. The
drawn image is resized and sent on the input of the convolution neural network
(CNN). CNN classifies the image and then the three possible transliterations with
the highest confidence score are displayed, see Fig. 1.

The second possibility how to use our tool is using it for transliteration of letters
given in photos. Instead of writing the letters by hand, the user takes a photograph
of the letter directly from sandstone tablet like in Fig. 2 or other document type
that is written in Palmyrene.

The user interface is visible in Fig. 3. There is also a help available, as well as
info and alphabet table available in the application.

The target group of users of this tool are archaeologists, who would use the
software for faster Palmyrene Aramaic texts transliteration, the secondary focus
group are other researchers and people outside the scientific community that could
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Fig. 1 In-app character classification.

Fig. 2 Ezample of a sandstone tablet containing Palmyrene script, Inv. 2983/9507,
© The Archaeological Museum Of Palmyra.

use the transliteration for educational purposes. The Android application can also
be modified if another historical alphabet model is trained. Therefore, it can be
used for further semi-automatic transliteration of any alphabet.
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Fig. 3 “Palmyrene Alphabet Transcription” mobile application user interface.
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2. Objective

Our goal was to design a suitable classifier for transcribing Palmyrene characters
into Latin, with special regard to its use in mobile applications. Current research
suggests using MobileNet classifier. Therefore, our first step was to verify the
possibility of using CNN with the MobileNet architecture and to train it on the
Palmyrene alphabet character set. Because the results obtained were not satisfac-
tory, we designed our own CNN architecture, trained it and then we compared the
results with the results obtained using MobileNet.

Our results confirmed that it is possible to design CNN architecture of the clas-
sifier that gives better results than MobileNet based classifier. It is likely that this
classifier would also give good results if trained for transcription of some another
similar alphabet.

3. Building the classifier

3.1 Training and validation set

In order to create a dataset of hand-written characters, we modified Axel Thevenot’s
“Python-Interface-to-Create-Handwrittendataset” tool available at Github [18]. The
letters were transcribed from a large number of photographs containing Palmyrene
alphabet, such as in Fig. 2. For acquiring these photographs of tablets with
Palmyrene inscriptions, we established a cooperation with two museums — Musée
du Louvre in Paris [9] as well as Virtual Museum Of Palmyra. [11].

Palmyra alphabet consists of 32 characters, see transcription table in Fig. 4. In
our research we considered only 28 characters. We excluded four characters — the
numbers 2, 3, 4 and 5. The numbers 2-4 are sequences of the characters 1, and
the number 5 looks exactly the same as the letter “ayin”. Using graphic tablet, we
wrote 56197 letters in total (exactly 2007 samples per each character).

The used system font for Palmyrene is “palmmne”. Each character class is
saved in a different folder with character name and using keras ImageDataGenera-
tor.flow_from_directory function, the dataset is converted to CNN-readable format.
With the generator, the data is split into two subsets — training set contains 80 %
data and validation set contains the remaining 20%. We did not use any data
augmentation method.

3.2 MobileNet based architecture

Our first choice of mobile network architecture was picked according to the cur-
rent recommendations — MobileNet efficient_lite0. This architecture consists of a
HubKerasV1V2 layer, Dropout layer to prevent overfitting and an output Dense
layer. The final activation function is softmax, as the problem solved is a multiple
category classification.

The training of the efficient_lite0 model (both photographic and hand-written)
used 80 % images for training and 20 % for validation. For model creation, we used
the library “tflite-model-maker” and did not alternate the architecture.
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Palmyrene Latin Transcription
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" Daleth D
A He H
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—_ 10, 100
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Fig. 4 Palmyrene characters and transcription to Latin.

For creating dataset, we call the tflite_model_maker.image_classifier.DataLoader
method. By calling this method, input images are resized to 224 x 224 pixels and
loaded into a data generator.
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The network is trained calling the function “model.create”, which runs training
for 5 epochs, with batch size 128 images. The core of the network is not trained, as
there are only 38430 trainable parameters and 3451454 non-trainable parameters.

Model summary is specified below.

Model: “sequential”
Layer (type) Output Shape Param #
Hub_keras_layer_v1v2 (HubKe rasLayerV1V2)  (None, 1280) 3413024
dropout (Dropout) (None, 1280) 0
dense (Dense) (None, 30) 38430
Total params: 3451454
Trainable params: 38430
Non-trainable params: 3413024

Tab. I MobileNet summary.

The training accuracy was very high even after the first epoch, it reached 0.902,
and in the last epoch it reached 0.993. The validation accuracy was 0.677. Model
is then saved in .tflite format.

3.3 Design of the custom CNN architecture

To design the network architecture, we conduct experiments with CNN layers. We
compare the influence of the number of convolutions in each Convolutional layer,
the influence of leaving out pooling layers, compare the difference in performance of
AveragePooling and MaxPooling layers and research the influence of the number of
repetition of Convolutional/Pooling blocks. We then pick the architecture, which
had the highest validation accuracy, lowest validation error and lowest validation
loss, and convert it to a mobile version of the model — “.tflite” for testing.

The training is conducted on the graphic card NVIDIA GeForce GTX 970 with
memory clock rate 1.1775 GHz, 1664 CUDA cores and memory size 8159 MB.

We created 10 versions of CNN architectures and researched the influence of
the combination of layers and numbers of convolutions on a small dataset of hand-
written letters (153 per class, image size 28 x 28). The results are visible in Tab. II,
where V' is version, Acc; is accuracy in given epoch i, Loss; is loss in given epoch i,
V _Acc; is validation accuracy in given epoch i, V _Loss; is validation loss in given
epoch 1.

Each architecture version was using alternation of Convolutional layers with
specified number of convolutions and Pooling layers, either MaxPooling or Aver-
agePooling. The last three layers were always Flatten and two Dense layers. The
versions are described in the following Tab. III, where Conv_i means the number
of convolutions in each i-th Convolutional layer.

As visible in Tab. II, the combination of low validation loss and high validation
accuracy was present in models using the straight alternation of Convolutional and
MaxPooling layers, with 3 or 4 such blocks (mostly versions 1 and 3). Adding
another Convolutional / MaxPooling block (version 7) lowered the validation ac-
curacy from 0.548 to 0.4967 in the last epoch and increased the validation loss
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V' Accl Loss.1 V_Accl V_Loss.1 Acc.15 Loss 15 V_Acc_15 V _Loss_15

0.2992
0.7730
0.2054
0.0649
2.8557
3.2109
3.0733
1.4428
3.1120
3.2842

O © 00O Uk W

—

2.74900
0.794 60
2.87113
3.254 80
0.26200
0.08200
0.11790
0.59240
0.12330
0.08940

0.3326
0.4330
0.2366
0.1373
0.2334
0.1652
0.1417
0.3571
0.1730
0.1696

2.6634
3.3265
2.8368
3.0333
3.2072
3.1675
3.2524
2.9419
3.0210
3.0293

0.9688
0.9648
0.9720
0.9389
0.9960
0.9626
0.9628
0.9658
0.9659
0.9652

0.0583
0.0511
0.0550
0.1334
0.0758
0.0805
0.0621
0.0499
0.6030
0.0928

0.5301
0.4196
0.5480
0.4085
0.4542
0.4743
0.4967
0.4877
0.5580
0.5022

2.5247
2.7923
2.6796
5.2541
4.2724
4.5598
4.0713
2.9082
2.9961
3.5259

Tab. II Influence of CNN layers on network performance.

V. Conv.l Conv2 Conv.,3 Conv4 Conv.5 Pool
1 16 32 64 Max
2 32 64 128 Max
3 16 32 64 128 Max
4 16 32 64 128 Avg
5 32 64 128 Avg
6 32 64 128 256 Avg
7 16 32 64 128 256 Avg
8 16 32 64 Max
9 16 32 64 64 Max

10 16 32 32 32 Max

Tab. III CNN versions description.

from 2.6796 to 4.0713. Using AveragePooling layers conducted in lower validation
accuracy to 0.4085 in version 4 and almost doubled the validation loss to 5.2541 in
comparison to using MaxPooling layers. The best performing architecture overall

was version 3.

3.4 Training of the new CNN model

We used the training / validation split equal to 0.8 / 0.2 using the library Image-
DataGenerator from tensorflow.keras. The images are resized to 28 x 28 pixels.

We picked the best performing model with 4 Convolutional layers alternated by
4 MaxPooling layers (version 3). The model summary is visible below.

We trained the network for 15 epochs, with batch size 128, selected optimizer
was “adam”. The training results are visible in Tab. V.
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Model: “sequential”
Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 28, 28, 16) 448
max_pooling2d (MaxPooling2D) (None, 14, 14, 16) 0
conv2d_1 (Conv2D) (None, 14, 14, 32) 4640
max_pooling2d_1 (MaxPooling2)  (None, 7, 7, 32) 0
conv2d_2 (Conv2D) (None, 7, 7, 64) 18496
max_pooling2d_2 (MaxPooling2)  (None, 3, 3, 64) 0
conv2d_3 (Conv2D) (None, 3, 3, 128) 73856
max_pooling2d_3 (MaxPooling2)  (None, 1, 1, 128) 0
flatten (Flatten) (None, 128) 0
dense (Dense) (None, 512) 66048
dense_1 (Dense) (None, 28) 14364
Total params: 177852
Trainable params: 177852
Non-trainable params: 0

Tab. IV Custom CNN summary.

Acc.l Loss.1 V_Accl V_Loss.1 Accl5 Loss 15 V_Acc.15 V_Loss_15

0.861 0.4718 0.9255 0.3092 1 4.66 0.9626 0.3315

Tab. V Results of final model training.

4. Evaluation on testing set

The testing dataset is not created in advance. Testing is conducted directly in
the mobile application, and the characters need to be written by hand in the
“Draw Letter” module. We use 10 samples in each class for testing of both CNN
architectures (280 images in total).

4.1 Metrics

For classifier evaluation, the metrics accuracy ace, error err, recall r Eq. (1), preci-
sion p Eq. (2) and F-score Eq. (3) are used. [2] Accuracy acc is the mean of correctly
classified characters, error err is the mean of incorrectly classified characters. Pa-
rameters of recall Eq. (2), precision Eq. (1) and F-score Eq. (3) are evaluated as
follows. For each category ¢ we consider binary decision whether character belongs
to the category i versus it belongs to any other category j # i and we calculate
precision p;, recall r; and F;-score.

o TP,
=Y 1
" ; TP + FP; (1)
m
TP,
=y 2
# ; TP, + FN, (2)
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.
Fi:M, (3)
Ti t i

where
— TP; is the number of correctly classified objects from category i
— F'P; is the number of characters from the category j # i incorrectly classified as
being characterss from category ¢
— F'N; is the number of characters from category ¢ incorrectly classified as being
characters from some another category j # i
— m is the number of categories.

The overall parameters of recall r Eq. (4), precision p Eq. (5) and F score
Eq. (6) are then evaluated as arithmetic means.

1 m
r= —Zri, (4)
mi3

1 m
p= E;pia (5)

4.2 Results of MobileNet and custom CNN classifier

The detailed results of MobileNet classifier evaluation on testing set are visible in
Tab. VI.

The mean error of this classifier is 0.311, while the mean accuracy reached 0.689.

The least recognized Palmyrene character is “20” and “mem” with only 1 (out
of 10) true positive recognition. The character “20” was otherwise classified as “pe”
and “waw”, while “mem” was classified as “beth”, “nun” and “pe”. 9 characters
— “107, “aleph”, “beth”, “he”, “nun”, “nun_final”’, “pe”, “shin” and “waw” were
recognized in each case (10 out of 10).

The classifier was over-oriented for character “pe”, as it had most false positive
predictions — 28 other letters were classified as “pe”, as it is visually similar to
other characters. The second character with most false positive predictions was
“nun” with 18 false classifications and the third one was “nun_final” with 9 false
positives.

The detailed results of custom CNN classifier evaluation on testing set are
visible in Tab. VII. The mean error of custom CNN classifier is only 0.018, while
the accuracy reached 0.982, which is a significant 142 % improvement from the
MobileNet classifier.

The least recognized character is “pe” with 8 true positives out of 10, one was
classified as “nun” and the other as “yodh”. 24 characters were recognized in all 10
cases out of 10, 3 had one false negative prediction — “gimel”, “resh” and “sadhe”.

There were only 5 characters with false positives — “20”, “daleth”, “heth”,
“nun” and “yodh”, each of them had 1 false positive prediction.
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class TP, FN, FP T i F; err  acc

1 8 2 2 0.8 0.8 0.8
10 10 0 0 1 1 1
20 1 9 0 0.1 1 0.182
aleph 10 0 9 1 0.526 0.690
ayin 6 4 0 0.6 1 0.75
beth 10 0 7 1 0.588 0.741
daleth 5 5 0 0.5 1 0.667
gimmel 4 6 0 0.4 1 0.571
he 10 0 0 1 1 1
heth 9 1 1 0.9 0.9 0.9
kaph 8 2 2 0.8 0.8 0.8
lamedh 7 3 0 0.7 1 0.824
left 2 8 5 0.2 0.286 0.235
mem 1 9 0 0.1 1 0.182
nun 10 0 18 1 0.357 0.526
nun_final 10 0 9 1 0.526 0.690
pe 10 0 26 1 0.278 0.435
qoph 7 3 1 0.7 0.875 0.778
resh 3 7 0 0.3 1 0.462
right 5 5 0 0.5 1 0.667
sadhe 4 6 0 0.4 1 0.571
samekh 3 7 0 0.3 1 0.462
shin 10 0 2 1 0.833 0.909
taw 5 5 1 0.5 0.833 0.625
teth 8 2 0 0.8 1 0.889
waw 10 0 4 1 0.714 0.833
yodh 8 2 2 0.8 0.8 0.8
zayin 7 3 0 0.7 1 0.824
mean 0.682 0.826 0.672 0.311 0.689

Tab. VI MobileNet classifier evaluation.

5. Discussion

The results of the Palmyrene hand-written characters classification were satis-
factory, as the accuracy reached 98.21 % instead of 68.93 % with MobileNet effi-
cient_lite0.

The reason behind the false predictions when using MobileNet is the visual
similarity of Palmyrene symbols. In sample datasets used for object detection
with MobileNet image classifiers, there are many distinct features that makes the
classification easier. Such objects like dogs, cats etc. can be stretched, rotated and
shifted within the image and still be recognized and classified correctly, however, in
case of characters of alphabets, the precise position, shape and rotation of letters
matter and can not be altered, because it would change the meaning of the letter,
as some letters look like others if rotated or stretched. The demonstration of such
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class TP, FN, FP T i F; err  acc

1 10 0 0 1 1 1
10 10 0 0 1 1 1
20 10 0 1 1 0.909 0.952
aleph 10 0 0 1 1 1
ayin 10 0 0 1 1 1
beth 10 0 0 1 1 1
daleth 10 0 1 1 0.909 0.952
gimmel 9 1 0 0.9 1 0.947
he 10 0 0 1 1 1
heth 10 0 1 1 0.909 0.952
kaph 10 0 0 1 1 1
lamedh 10 0 0 1 1 1
left 10 0 0 1 1 1
mem 10 0 0 1 1 1
nun 10 0 1 1 0.909 0.952
nun_final 10 0 0 1 1 1
pe 8 2 0 0.8 1 0.889
qoph 10 0 0 1 1 1
resh 9 1 0 0.9 1 0.947
right 10 0 0 1 1 1
sadhe 9 1 0 0.9 1 0.947
samekh 10 0 0 1 1 1
shin 10 0 0 1 1 1
taw 10 0 0 1 1 1
teth 10 0 0 1 1 1
waw 10 0 0 1 1 1
yodh 10 0 1 1 0.909 0.952
zayin 10 0 0 1 1 1
mean 0.982 0.984 0.982 0.018 0.982

Tab. VII Results of model with 4x Conv/MazPooling network architecture.

similarity is visible in Fig. 5. The most similar letter to “pe” is “20” and so it had
the highest classification error with MobileNet.

When using custom classifier, the improvement is significant (142 % better), as
the CNN architecture was tested especially for letter classification and is less prone
to error when classifying objects with less distinct features.

Fig. 5 Visual similarity of character similarity.
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Mara H. conducted the analysis of 3-dimensional scans of tablets with cuneiform
signs, however the success rate is not presented in the research. [10] Yamauchi
researched hand-written cuneiform characters, but also did not publish classifier
results. [19]

Ghosh et al.’s model, that recognized Bangladeshi signs, reached 96.46 % accu-
racy on MobileNet, which is 2.4 % less than with our upgraded CNN hand-written
model. The Bangladeshi script contains 60 letters [3]. Its hand-written were also
analysed and reached 90.27 % accuracy. [13]

Our classifier is also comparable with other object recognition tasks, for example
Cho Junghwan et al. have researched CT body scans. The dataset contained 4000
very high quality images and they reached 97 % accuracy on GoogLeNet Inception
v1 architecture. They also described, how the results declined if less images were
used, accordingly [8].

The F-score of 83 % has been reached in the task of great tits and carried food
recognition by part of our team. We analysed photos from Smart Nest Boxes.
For the model, we used YOLOv3 architecture. The F-measure was lower due to
difficult object detection. [0]

Our results of Palmyrene letters recognition were therefore comparable with
other author’s works. The classifier results were satisfactory, over 70 % as initially
stated in the success criteria. With a 98.21 % classification success, the task of
hand-written Palmyrene characters classification can be considered resolved.

6. Conclusion

We have explored the architectures suitable for character recognition for mobile
use, which is an ever evolving area. Letters and numbers classification is a special
image classification case, as, unlike other objects, the images of alphabet characters
can not be manipulated rotation-wise, shape-wise and shift-wise. We conducted
experiments with convolutional neural network architectures special for character
recognition on Android devices, aiming to improve the classification in comparison
with MobileNet, and found out, that the network with 4 Convolutional layers
alternated by MaxPooling layers has better classification results than other tested
networks and trained this network on our data and improved hand-written classifier
results by 142 %.

We updated the model in our software tool, which uses artificial intelligence
for semi-automation of historical alphabets transliteration and proved its function
on Palmyrene Aramaic script. From a general point of view, we can state that
if a different model is trained on another alphabet, using the same architecture
and mobile application (using different dataset of letters, and with some alterna-
tions of in-app texts), this research can serve as a template for other historical
script analysis and a foundation of historical optical character recognition (OCR)
algorithms.

There is still room for improvement in performance of the photographic model,
which is still run on MobileNet and has only 440 images per class in the dataset.
We plan to expand the set using keras augmentation and to develop generative
adversarial networks. We also plan to create a web application for Palmyrene
alphabet recognition, where we will also implement rows recognition and character
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segmentation, creating a Palmyrene OCR, aiding researchers with transliterating
Palmyrene Aramaic texts in field use and thus contributing to biblical studies. The
aim of the next steps of this research is however not just to create a Palmyrene OCR,
but to suggest neural network architectures for any historical alphabet character
detection, segmentation and classification on mobile and improve the state of art
of creating mobile OCR.
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Abstract. In this paper, we present a method for expanding small classification
datasets. Every research project is based on data and methods, including text anal-
ysis. When analyzing historical texts in different alphabets, there are not always
Optical Character Recognition algorithms available and, in many cases, such texts
need to be transliterated and translated manually, or alternatively, an OCR algo-
rithm can be developed. In order to create such an algorithm, a large volume of
input data is needed - each alphabet consists of elementary data - either letters,
vowels, or in some cases ideograms. The texts need to be segmented into such
elements, and then, the elements are classified. In many cases, it is very diffi-
cult and time-costly to get a sufficient amount of data, and it is advisable to use
augmentation methods. In our research, we propose using Generative Adversarial
Network to expand a relatively small dataset of Palmyrene letters and prove that
even by adding generated data equal to the third of size of the original dataset, the
classification results are improved by 120%.

Keywords: GAN - Palmyrene alphabet - Data science - Data augmentation

1 Introduction

The fundamental part of each object detection and image classification problem is a
sufficient amount of visual data. Depending on the object that is classified, they vary
from high quality satellite photos when detecting roads [1] or moving objects [2] to small
images of letters in the historical alphabet OCR, for example Arabic OCR Dataset [3].

Even a sample dataset like MNIST [4] uses a very large number - more than 60
thousand of small images 28 x 28 pixels of 10 classes of handwritten Arabic digits 0-9.
In general, the recommended number of images per class, for an object to be classifiable,
is about 1000 [5].

It is not always possible to get a sufficient number of such images when classifying
historical documents. There may not be enough visual data available and getting more
data may be very difficult. Therefore, we suggest augmentation methods for historical
alphabet datasets and prove it in our research of classifying Palmyrene signs on mobile
phones [6].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Silhavy et al. (Eds.): CoMeSySo 2022, LNNS 597, pp. 132-141, 2023.
https://doi.org/10.1007/978-3-031-21438-7_11
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1.1 Letter Classification

Image classification is the process of sorting such visual files into classes based on
features in the images content. The most common Artificial Intelligence algorithms used
for image classification are Convolutional Neural Networks, and for analyzing words or
sentences, a combination of Convolutional and Recurrent layers is usually used [7].

Classification of letters is usually part of Optical Character Recognition; however
it can be done by itself like in the case of Javanese [8], Czech [9] or Palmyrene [6]
alphabets. Optical Character Recognition is using segmentation and classification, and
for analyzing text sequences, Recurrent Neural Networks with LSTM layers [10].

During classification, images are resized to evenly sized squares, as the input to the
classifier requires. Therefore, when training a classifier, it is more convenient to work
with square inputs directly, to prevent letter distortion (Fig. 1).

-\'

pr 4

.
Fig. 1. Photo of Palmyrene letter “He” in square image.

1.2 Getting Data for Letter Classification from Historical Documents

Extracting letters from historical documents can be done by using several methods.
When using mathematical methods for letter extraction, a feature extraction like Inde-
pendent Component Analysis or Principal Component Analysis is used, and then, the
letter is classified by a classifier - either SVM or Neural Network [11]. In 2011, Meyer
decomposition was used as a feature extraction method [12].

For classification purposes, a dataset of separate letters is necessary, therefore, the
most reliable, zero error way, is to cut out the letters manually and sort them out in folders,
each folder representing one sign class. Any automatic feature extraction method is prone
to error.

Manual method is very time-costly and only a limited number of letters can be
processed this way. Therefore, it is best to combine the methods mentioned above.

1.3 Current State of Art of Palmyrene Alphabet Classification

Until March 2022, there was no Palmyrene alphabet transliteration published. In our
previous research [6], we have created two classifiers trained on hand-made data, which
are run on a mobile phone with Android operating system, the models are saved in.tflite
format.
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The first one of them is transliterating hand-written signs, it was trained on a dataset
of 56207 images (2007 per class) with the size 28 x 28 pixels and reached 98.21%
classification accuracy on testing set. The second one was trained on cut out photos,
440 images per class in mean. The classification accuracy of photos of signs in the
testing set reached only 41,13% on the same architecture, which is caused by a higher
complexity of photos and a significantly lower number of images in the dataset. It is
therefore necessary to increase the number of photos in order to get better results.

2 Methods of Image Augmentation

2.1 Keras Generator

The simplest way to increase the number of images in a dataset is to use preprocessing
methods implemented in Keras libraries that allow resizing, random cropping, rotation,
flip, translation, zoom, changing height, width, contrast and brightness [13]. However,
most of these methods are not desirable, as alphabet signs need to be kept in the same
orientation and undistorted.

2.2 Roboflow

Roboflow [14] is a platform used for different machine learning projects, such as object
detection, single or multi-label classification, instance or semantic segmentation, key-
point detection and others. It allows the researchers to annotate data in-app, generate
datasets, and train machine learning models.

For the purposes of this paper, we only mention the augmentation options. They can
be divided into desirable and undesirable augmentation for sign detection.

Desirable augmentation options include:

auto-adjust contrast
greyscale

hue

saturation
brightness
exposure

blur

noise.

Undesirable augmentation options are:

auto-orient
resize

static crop

tile

modify classes
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flip

90° rotate
crop
rotation
shear
cutout
mosaic.

3 Generative Adversarial Networks

Both Keras generator and Roboflow work with the images that we manually annotate
or classify, and only apply filters on them, but the output are no new images. In order to
create images that are different from input images, but resemble real inputs, we suggest
using Generative Adversarial Networks - GANs.

GAN is one of the architectures that was designed by Ian Goodfellow et al. in 2014. It
is a generative network that aims to generate data that resembles real inputs at most. The
most well-known example is photo editing, where unwanted objects can be replaced
with a believable background. Another example is to generate photos of people who
never existed, or to increase the quality and resolution of a small image [15].

Augmentation using GANs has been already used, for example, in research on the
recognition of liver lesions from medical images. In that field of research, it is also
complicated to gather data [16].

4 Using GAN for Palmyrene Alphabet Augmentation

The Palmyrene alphabet has 28 characters (there are more, but the letter “ayin” looks
like number five and numbers 2 and 3 look like digits one next to each other). Therefore,
we trained 28 separeted GANS - one for each character.

Some characters have more variants, but we decided we would train only one
generator per sign and examine the results.

4.1 Network Architecture

Every GAN consists of a discriminating network that is classifying real inputs from
generated inputs, and a generating network.

At the start of the training, the generator generates random noise and during training,
itadapts features from the discriminator, and generates images, which are more and more
similar to real inputs. The discrimination improves in the classification of real from fake
images and learns more detailed features, but they are handed over to generator. In the
end, it results in the generator generating almost real images.

The architecture of our GAN is visible in Table 1.

4.2 Training Parameters

We have trained these networks on Google Colab with GPU Hardware acceleration.
Training was executed for 200 epochs, 32 images in batch, codings size 100. The
training of each GAN took approximately 20—30 min.
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Table 1. GAN architecture.

Layer (type) Output shape Param #
DISCRIMINATOR

conv2d (Conv2D) (None, 50, 50, 64) 1664
dropout (Dropout) (None, 50, 50, 64) 0
conv2d_1 (Conv2D) (None, 25, 25, 128) 204928
dropout_1 (Dropout) (None, 25, 25, 128) 0
flatten (Flatten) (None, 80000) 0
dense_1 (Dense) (None, 1) 0
conv2d_3 (Conv2D) (None, 12, 12, 128) 73856
GENERATOR

dense (Dense) (None, 80000) 8080000
reshape (Reshape) (None, 25, 25, 128) 0
batch_normalization (BatchNormalization) (None, 25, 25, 128) 512
conv2d_transpose (Conv2DTranspose) (None, 50, 50, 64) 204864
batch_normalization_1 (BatchNormalization) (None, 50, 50, 64) 256
conv2d_transpose_1 (Conv2DTranspose) (None, 100, 100, 1) 1601

Total params: 8,573,826
Trainable params: 8,573,442
Non-trainable params: 384

5 Results

We have trained 28 GANSs, one for each Palmyrene sign, and generated new data with
them, then trained two classifiers without and with generated data added to the dataset.
The results are presented below.

5.1 GAN Success Rate

In total, there were 12824 images generated, 458 by each class, and correct images were
hand-picked. 4089 of generated images looked like the real Palmyrene signs, such as in
Fig. 2, and were kept.

There was a high variability of kept images in each class, as visible in Table 2.
The generators for signs “teth” and “sadhe” generated less than 10% of the images
correctly, which is caused by a high variability of the signs themselves. The generator
tends to combine the features of all variants and mix them together, which results in
badly generated images.

However, there was a success rate between 73 — 78% for the signs with a low
variability, such as “left,” “zayin” and “1” (Fig. 3).
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Fig. 2. One of the images from “nun-final” GAN generator.

Table 2. Palmyrene letter generator success rate.

Generated images kept | Palmyrene signs Percent of generated images kept
(%)
<50 teth, sadhe 5-8
50 - 100 lamedh, ayin, daleth, pe, resh, | 10-20
gimel, heth, nun, shin, mem,
yodh,
100 - 150 beth, taw, kaph, waw, samekh, |21 —28
he
150 —200 20, nun_final 40-44
200 - 300 aleph, right, 10, qoph 46 — 66
> 300 left, zayin, 1 73-178
Images kept
> 300

10,7%

200 - 300
14,3%

150 - 200
71%

100 - 150
21,4%

Fig. 3. Percentage of kept generated images.
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Table 3. Validation loss during training of both classifiers.

Classifier Accuracy after | Validation Accuracy after | Validation
epoch 1 accuracy after | epoch 20 accuracy after
epoch 1 epoch 20
Without generated | 0.5166 0.4831 0.9998 0.6463
images
With generated 0.5969 0.6791 0.9937 0.7791
images

5.2 Classifier Improvement

Both classifiers have been trained for 20 epochs, 128 images with size 100 x 100 pixels
in a batch.

The first classifier was trained on 12101 images without augmentation. For the second
one, generated images were added. In total there were 16190 images. Both classifiers
were trained on the same following architecture (sequential model).

Table 4. Classifier architecture.

Layer (type) Output shape Param #
conv2d (Conv2D) (None, 100, 100, 16) 160
max_pooling2d (MaxPooling2D) (None, 50, 50, 16) 0

conv2d_1 (Conv2D) (None, 50, 50, 32) 4640
max_pooling2d_1 (MaxPooling2D) (None, 25, 25, 32) 0
conv2d_2 (Conv2D) (None, 25, 25, 64) 18496
max_pooling2d_2 (MaxPooling2D) (None, 12, 12, 64) 0
conv2d_3 (Conv2D) (None, 12, 12, 128) 73856
max_pooling2d_3 (MaxPooling2D) (None, 6, 6, 128) 0

Total params: 2,471,324
Trainable params: 2,471,324
Non-trainable params: 0

As visible in Table 3, the increase in the volume of dataset had a positive influ-

ence on the classification results. While without augmentation, the classifier reached
0.6463 accuracy on validation subset at the last epoch; by adding generated images, this
improved by 120,55% to 0.7791. The loss and accuracy graphs are visible in Figs. 4 and
5 (Table 4).

6 Discussion

In 2018 there was research aimed to expand datasets with GAN for liver lesion recog-
nition. Originally, they had only 182 real images of liver lesions and the precision and
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recall reached 88.4 and 78.6%. By adding 120 generated images, the classification results
were boosted to 92.4 and 85.7% [16]. In the same year, another research used GAN for
brain analysis - segmentation of cortical CSF, brain stem CSF and ventricular CSF. They
had 80000 real images and 40000 generated ones; the segmentation improved slightly

as well [17].
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Our classifier accuracy increased from 64 to 77%. When generating Palmyrene signs,
the success rate of generated images varied between less than 100 to almost 400 from
458. Some Palmyrene signs have more variants, and the generators tend to combine the
features of all variants and in the end the generated images don’t look like real signs.
However, low variety signs were generated very well.

The solution to this problem is creating multiple separate generators for each variant
of one sign.

7 Conclusion

We have analyzed augmentation options for small datasets in order to improve classifi-
cation results and trained Generative Adversarial Networks for augmenting the photo-
graphic dataset of 28 letters and numbers from the Palmyrene alphabet, which is used
to train the Convolutional Neural Network - a classifier of photos - in the previously
published mobile application “Palmyrene Alphabet Transliteration”. The success rate of
well generated images was 31.88% due to high variability of signs.

Although the number of kept images was not very large, thanks to adding the gen-
erated pictures to the dataset, the classifier results improved by 120.55%. This proves
that using GAN for enlarging the datasets for OCR algorithms is desirable, when little
original input data is available.

Acknowledgments. This article was created with the support of the Internal Grant Agency (IGA)
Faculty of Management and Economy, Czech University of Life Sciences in Prague, 2022A0001 —
“Researching methods of automatic augmentation of datasets using Machine Learning tools”.
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Abstract. Inthis study, we present the research plan and the segmentation solution
in progress for our Palmyrene OCR web and mobile application from sandstone
tablet photographs, which will be publicly available on the ml-research.pef.czu.cz
web portal in the next steps of the research. In this paper, we compare mathe-
matical segmentation methods with artificial intelligence methods, highlighting
the advantages and disadvantages of each solution, and propose a fully auto-
mated OCR procedure from photographs using convolutional neural networks
exclusively and present a development model of our solution. We also present a
partially completed segmentation dataset of the Palmyrene letters to demonstrate
the functionality of the proposed procedure. We hope to complete the Palmyrene
OCR soon, thus making the writings of ancient Palmyra accessible to the scientific
community and the public, signifying progress in the area of Digital Humanities.
Since the algorithm is not completely ready yet, we also present its development
model here.

Keywords: Artificial Intelligence - Segmentation - Historical Alphabet -
Software Development Modelling

1 Introduction

The use of Optical Character Recognition (OCR) has become increasingly important in
modern times, enabling the automated processing of scanned documents, handwritten
notes, and other images of text. However, to achieve accurate OCR results, it is crucial
to first segment the text from the surrounding noise and other elements within the image.
In the context of analyzing historical texts, which are not written on paper that can be
scanned, developing a reliable OCR algorithm is a challenging task.

In recent years, several historical OCR datasets have been developed (see section:
Theoretical overview — Historical OCR in digital humanities), which contain text images
and corresponding ground truth segmentations for training and evaluating OCR models.

In this scientific article, we introduce a new segmentation Palmyrene OCR dataset
that we have developed and present an analysis of its characteristics and potential applica-
tions. Our dataset consists of diverse polygon-labelled images of Palmyrene inscriptions,
funerary stelae, and other sandstone tablets with Palmyrene Aramaic texts, provided by

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. Babkin et al. (Eds.): MOBA 2023, LNBIP 488, pp. 80-95, 2023.
https://doi.org/10.1007/978-3-031-45010-5_7
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several museums (see section: Methodology - Data). The photographs include varying
handwritings of different colors, sizes, and backgrounds. We believe that this dataset will
be a valuable resource for researchers and practitioners working on OCR and related
applications, enabling them to develop and test robust and accurate OCR models.

As the OCR algorithm is not finished at the time, a model of the development process
is presented here as well, allowing easy to understand and easy to follow steps to complete
it in the near future.

2 Theoretical Overview

2.1 SW Development Modelling

Process Management is, to quote [ 1], nowadays “considered as a new way of managing an
organization”. According to [2] it is a managerial-economic discipline. The technology
of process-oriented management is used here. We can say that process management
is actually a set of tools, technologies and methods that are used to design, analyze,
validate, approve and manage processes.

The management of an organization, or just in our case the management of a team, is
then based on the principles of process mapping. Each process consists of sub-steps or
tasks. These have to be executed chronologically or some have to be executed in parallel.

2.2 OCR

Developed first in the mid-20th century, OCR systems are now considered to be one of
the most intricate applications of computer vision and image recognition [3]. Essentially,
OCR involves identifying patterns that represent alphanumeric or other characters from
a digital photograph or PDF scan [4].

The whole process of Optical Character Recognition (OCR) [5] involves the digitiza-
tion of physical documents such as papers or historical artifacts with inscriptions, through
scanning or photographing. The digitized image then undergoes local segmentation to
differentiate text from other graphical elements, followed by optional pre-processing
to reduce noise and normalize the image. The next step, segmentation or binarization,
separates the image into non-text and text parts, and further segments the text into
individual characters or parts of characters. The characters are then represented through
global, statistical, or geometric representations. Feature extraction is commonly achieved
through template matching, based on the distribution of points extracted from the image.
OCR systems are trained and recognized through the creation of templates of individ-
ual features, using statistical techniques, cluster analysis, or artificial neural networks.
Post-processing involves the composition of detected features into words, which are
compared with a dictionary and modified for coherence. The final step is the output text
in a machine-readable format, which can be further processed through natural language
processing systems for tasks such as language translation or text summarization.
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2.3 Historical OCR in Digital Humanities

Related Research

The interest in creating historical OCR is constantly rising, as standard historical text
analysis needs to be done by experts in the field, who can read and translate the ancient
languages. This process is time-consuming and limited to a small number of specialists,
therefore automation of this process A cuneiform NLP algorithm was developed by
Gordin et al. from hand-written cuneiform transliterations [6], and a cuneiform horizontal
stroke detection was developed thereafter [7]. An evaluation tool for Arabic OCR was
published in 2017, presenting custom metrics [8], followed by a new Arabic OCR dataset
consisting of almost 9000 images in 2018 [9]. A Bangla classification dataset [10] was
published in 2020. A team from Bangladesh and Japan developed BengaliNet [11], a
classification network for Bengali hand-written characters with an average of 97.5%
accuracy. The Persian alphabet recognition dataset [12] was presented in 2020.

Palmyrene OCR Development

Our team has started working on Palmyrene OCR 1n 2021, at first by creating a classifica-
tion dataset of hand-written and photographic data. We have implemented the classifier
on efficient_liteO architecture in an Android application presented in CSOC Springer
conference [13], followed by presenting a custom optimized classifier for hand-written
Palmyrene characters [14]. As photograph classification was not very successful, we
used augmentation methods such as keras augmentation and Generative Adversarial
Networks and doubled the accuracy [15]. We also created a web application (for which
the paper is under review), available at ml-research.pef.czu.cz. There, the photo classi-
fication, and hand-written classification is available as well. At the time, the application
accepts only one letter at a time as input, so transliterating the whole sandstone tablets
take a lot of time. Therefore, we started working at automatic segmentation.

2.4 Contemporary Segmentation Methods

To improve recognition, current OCR research [16] incorporates different systems into
a hybrid solution, which lowers the error rate when only one OCR algorithm is utilized.
Systems are being created for languages that were previously unavailable, such as Arabic
[17], Hindi [18], Japanese [19], and many more, but not Palmyrene Aramaic.
Post-processing techniques are being improved to account for many forms of errors
and make automatic corrections [20]. The issues that these systems run into in typical
settings are mentioned in a comparison study of existing OCR systems from 2021 [21],
but only for Latin OCR herein. One of them is the challenge of identifying letters on a
scanned page when they are deformed, blurry, or when whole characters are missing.
The necessity to extract numerous distinct features for each character class or to use
multiple templates and elastic templates for character classification is caused by font
variations, which is another issue. As the letters in the Palmyrene script are carved in
sandstone rather than written on paper, it is logical to conclude that both of these concerns
will also be relevant in the OCR development of this script. In order to highlight the
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features of characters from background, it will be important to utilize the proper pre-
processing techniques. Additionally, neural networks can be used for feature extraction
and classification rather than template matching.

Contemporary OCR system approaches involve complex compositions of mathe-
matical and artificial intelligence methods in each phase of the algorithm. We believe
that the development of OCR systems can be simplified given the state of artificial neural
networks, and we want to investigate this idea here.

3 Objective

The goal of this step of our research is to automate the reading of Palmyrene inscrip-
tions from a photograph of sandstone tablets or funerary stelae. As Palmyrene Aramaic
inscriptions are read right to left, top to bottom, we plan to:

e segment each of the characters from the background using computer vision, namely
instance segmentation

e program a script, which will redraw the segmentation predictions to polygons in a
blank image

e create a SW development model of our solution

4 Methodology

4.1 Data Acquisition

To get high quality photographs of Palmyrene inscriptions, we have contacted several
museums and retrieved available images of sandstone tablets, coins, and funerary reliefs:

Musée du Louvre [22]

Archaeological Museum of Palmyra [23] (Fig. 1)
Virtual Museum of Syria [24]

British Museum [25]

Ontario Museum [26].

4.2 Pre-processing

Some of the images had poorly visible inscriptions, therefore, preprocessing in the form
of adjusting brightness, contrast and color spectrum of these images was necessary,
before uploading to the annotation platform.

4.3 Annotating Segmentation Dataset

The annotation of polygonal labels for instance segmentation was conducted in the online
tool Roboflow [27]. Roboflow is a computer vision platform that helps researchers and
other users build, train, and also deploy computer vision models, such as classification,
object detection, instance or semantic segmentation and more. The platform offers a
suite of tools and services designed to simplify the process of creating custom machine
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Fig. 1. Example photograph of Palmyrene inscriptions used in the dataset, Archaeological
Museum of Palmyra, Inv. 1439/8583; text: hb’ brt | Sm§grm | br bny bzy I'tt b‘ly | br ‘gylw |
hbl

learning models for image and video analysis. Roboflow allows users to upload their
own datasets of images, then pre-process and augment the data after labelling, in order to
improve model accuracy. Roboflow also offers APIs and SDKSs that enable more granular
control over the machine learning process, or the datasets can be exported and used in
custom training.

We have created an instance segmentation dataset and used polygonal label tool to
create points, that outline each character. There is just one class — character — and each
character is later classified by custom classifier in a custom script Draw-Polygon.

4.4 Draw-Polygon Tool Development

We have developed an algorithm for processing and plotting polygons, which are results
of YOLOVS predictions. The polygons are read from a text file, where each polygon is
represented as a set of points. The points are parsed, and their x and y coordinates are
extracted into separate lists. Each polygon is plotted as a filled shape using matplotlib.
The resulting plot is saved as an image and loaded for further processing with PIL. The
image is flipped horizontally and resized with antialiasing. A new blank image is created
with size 100x100, and the resized image is pasted in the center. The padded image is
saved, and the original image is removed.

The input to the tool is in the format O (index class of object — in this case there is
just one class - character) followed by a list of (x-coordinate y-coordinate). The output
images are visible in Fig. 2.
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pelygon_8.png polygon_9.png polygon_10.png  polygon_11.png
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Fig. 2. A sample of output images from Draw-Polygon tool, characters O: shin, 1: mem, 2: shin,
3: he, 4: samekh, 5: mem, 6: beth, 7: daleth, 8: nun, 9: waw, 10: daleth, 11: beth, 12: gimel, 13:
14: daleth, 15: aleph and 16: waw

4.5 SW Development Modelling

For modeling purposes, the OnLine tool Cardanit BPMN [28] was used. This tool can
be used directly in the browser of the computer. It does not need to be installed and a
very powerful feature is that it is possible to share the project with another researcher of
the team and work on it simultaneously in real time.

BPMN was chosen as the notation for modeling the partial steps of the project. In
our case, the chronology is written down as tasks that are carried out in individual years
(these are represented by the so-called swimlines). Events that have occurred or will
occur (that is, mainly publishing activities) are recorded using textual descriptions. Here
we depart from the BPMN notation. We do not use the “event” symbol for them. This is
because an “event” is seen as a kind of milestone that performs an action in the process
model. In our case, however, it is an external output that does not enter the process model
further.

The next model is a block diagram (control chart) of the process of processing the
photograph of the Palmyra script. This diagram describes how the image processing
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operations, the data preparation procedure for deep neural network learning, and the
final transcription (transliteration) of the script into digital form are performed.

4.6 YOLOVS Instance Segmentation

Instance segmentation models are usually built on object detections models with alter-
nations to predict polygonal labels. There are two types of detectors —one and two stage.
The main difference between one-stage and two-stage detectors is the approach used to
predict object locations and class labels. One-stage detectors make predictions in a sin-
gle pass through the network, while two-stage detectors first generate region proposals
and then classify objects within those regions. One-stage detectors are faster but less
accurate, while two-stage detectors are more accurate but slower. The choice of which
detector to use depends on the specific application requirements, including speed and
accuracy. As we wanted our solution to work on mobile phones as well, we opted for
a single-stage detector edited for instance-segmentation. Therefore, our selected algo-
rithm for instance segmentation was YOLOvVS [29], which was released in 2020 as an
object detector and in 2022 extended to instance segmentation.

During training YOLOVS instance segmentation model, we minimize the three fol-
lowing losses. YOLO also minimizes classification loss, but since we only have one
class, we do not track it in this research.

e box loss — it calculates how well the algorithm finds the center of the object and how
well the bounding boxes overlap the object.

e seg loss — segmentation loss, it calculates, how well the algorithm creates segmenta-
tion masks, how much they fit into the actual shape of the target object.

e o0bj loss — objectness loss, it is the algorithm’s confidence that an object exists within
a given box (apart from polygons, yolo also predicts boxes).

In contrast, we maximize the metric mAP (= mean average precision).

5 Results

5.1 Dataset

We have labelled 28 images of Palmyrene inscriptions so far, with 1343 Palmyrene
characters. 24 images were put in training, 1 image to validation and 2 images to testing
subsets. We have selected several augmentation methods in Roboflow:

Grayscale: Apply to 100% of images
Saturation: Between —82% and + 82%
Brightness: Between —20% and + 20%
Exposure: Between —10% and + 10%
Noise: Up to 5% of pixels

By using this augmentation, the final dataset contained 75 images in total. The dataset
1s available at [30].
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5.2 SW Development Model
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In the following three figures, we show the corresponding BPNM and flow diagrams.

Figures 4 and 5 include one diagram split in half due to its size (Fig. 3).

Fig. 3. Flow diagram of Palmyrene OCR application
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Fig. 5. Project model BPMN part 2 of 2

5.3 YOLOVS Instance Segmentation

We have trained a YOLOVS instance segmentation model with the following parameters
on Google Colaboratory using GPU engine (Table 1).

At the start and at the end of training, the tracked metrics showed following val-
ues. First three epochs were warm-up epochs, so the metrics are tracked from epoch 4
(Table 2).
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Table 1. Training parameters

Parameter Value
Number of layers 225
Number of parameters 7408214
Number of gradients 7408214
Number of GFLOPs 24.9
Image size 640 x 640
Batch size 16

Epochs 100

Transfer learning initial model

Yolov5s-seg.pt

Learning rate

0.01

Lrf 0.01
Momentum 0.937
Weight decay 0.0005
Warmup epochs 3
Warmup momentum 0.8
Warmup bias learning rate 0.1

Table 2. Segmentation neural network training progress

Metrics Box loss Seg loss Obj loss mAP50 mAP50-95
Epoch 4 0.1164 0.1007 0.2553 0.00174 0.000174
Epoch 52 0.06822 0.04918 0.2365 0.815 0.305
Epoch 99 0.04529 0.04586 0.19 0.881 0.368

The images in the validation subset reached the following prediction result. We have
removed displaying bounding boxes and confidence scores by editing utils/plots.py in
yolo (Fig. 6):
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Fig. 6. Prediction using YOLOVS segmentation network.

5.4 Prediction Using Draw-Polygon Tool and Custom Classifier

The draw-polygon tool being developed is currently capable of drawing polygonal labels
onto empty images and saving them without taking the order of letters into consideration.
This could be useful for demonstration purposes, however, there are still some steps that
need to be taken in order for the tool to become fully usable. The tool is still in an early
stage of development and requires further refinement, testing, and debugging before it
can be used in practical application.

6 Discussion

6.1 Comments on Results

We have presented a work-in-progress solution of Palmyrene OCR. The results provided
consist of a YOLOVS instance segmentation model, which was trained to recognize
Palmyrene inscriptions using 28 labelled images with 1343 characters. The model was
trained with a variety of augmentation methods to increase the size of the dataset and
improve its robustness. The results show that after 100 epochs, the model achieved
good performance, with an mAP50 of 0.881. Additionally, the draw-polygon tool is
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being developed to allow for the drawing of polygonal labels onto empty images. The
excellent mAP score suggests that it is possible to create reliable segmentation masks and
thus identify the Palmyrene characters correctly. The presented development diagram
shows which steps were taken to reach these results and which steps still remain and the
second diagram shows what options are and will be available in our application.

6.2 Comparison with Other Authors’ Works

There was multiple related research, which we can compare our results with. Among
them are some sources already mentioned in the literature overview as well as some more.
The field of OCR has seen significant developments in recent years, and researchers are
continuously working towards improving the accuracy and efficiency of OCR systems.
In this discussion, we can see the results of several OCR projects, each targeting a
different aspect of the problem.

Sayeed etal. [11] propose alow-cost novel convolutional neural network architecture
for the recognition of Bengali characters. The authors have considered 8 different forma-
tions of CMATERGdb datasets based on previous studies for the training phase and have
shown that their proposed system outperformed previous works by a noteworthy margin
for all 8 datasets. Moreover, they have tested their trained models on other available
Bengali characters datasets and achieved 96-99% overall accuracies.

Ghosh et al. [10] focuses on the recognition of 231 different Bangla handwrit-
ten characters using state-of-the-art pre-trained CNN architectures. The authors have
shown that InceptionResNetV?2 achieved the best accuracy (96.99%) after 50 epochs,
while DenseNet121 and InceptionNetV3 also provided remarkable recognition accuracy
(96.55 and 96.20%, respectively). The authors have also considered the combination of
trained InceptionResNetV2, InceptionNetV3, and DenseNetl21 architectures, which
provided better recognition accuracy (97.69%) than other single CNN architectures.
However, it is not feasible for using as it requires a lot of computation power and mem-
ory. The authors have tested the models in the cases where characters look confusing to
humans, and all the architectures showed equal capability in recognizing these images.

Doush et al.’s project [9] proposed an Arabic printed OCR dataset, extracted ran-
domly from Wikipedia, with 4,587 Arabic articles and a total of 8,994 images. This
dataset is expected to be a valuable resource for the research community to build robust
Arabic OCR systems.

Nashwan et al. [31] introduced a computationally efficient, holistic Arabic OCR
system, using a lexicon reduction approach based on clustering similar shaped words to
reduce recognition time. The system managed to generalize for new font sizes that were
not included in the training data, and the evaluation results were promising compared
with state-of-the-art Arabic OCR systems.

Radwanetal. [32] presented an open vocabulary Arabic text recognition system using
two neural networks, one for segmentation and another one for characters recognition.
The segmentation model showed high accuracy of 98.9% for one font and 95.5% for
four fonts, while the character recognition accuracy was 94.8% for Arabic Transparent
font of size 18 pt from APTI dataset.

Amara et al. [33] is discussing the importance of OCR in various applications and the
challenges in segmenting Arabic characters for OCR. To prevent segmentation errors,
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the authors propose a binary support vector machine (SVM) to decide whether to affirm
segmentation points or re-do the segmentation, and deep learning methods to classify
the characters.

Hussain et al. [34] presented a new approach for segmentation-based analysis for
Nastalique style of Urdu language OCR. The segmentation-based method was optimized
using 79,093 instances of 5249 main bodies, giving recognition accuracy of 97.11%. The
system was then tested on document images of books with 87.44% main body recognition
accuracy.

From this comparison, we can see, that our dataset is very small in comparison to
other author’s works. By annotating more images and by this, using more instances
of Palmyrene characters for the training, we could reach over 90% accuracy in our
recognition if we use more data for training our segmentation algorithm. We have already
reached 88% with limited dataset size, so the potential is very promising.

6.3 Next Steps

Based on the results comparison, in later phases of this research, we will annotate
more images of Palmyrene inscriptions. We also need to improve the draw-polygon
tool by taking original image size into consideration and before drawing the polygons,
first sorting the segments in left-to-right top-to-bottom order, as Palmyrene Aramaic
is read this way, and then classify the polygons (characters) in the selected order with
our previously developed classifier [14]. During the classification, each of these images
will be assigned to a category of 28 Palmyrene characters and written down as Latin
transliteration in the right order. The plans are also to implement this feature in the web
and mobile applications.

The final step of creating a complete Palmyrene OCR is to create a Palmyrene NLP
algorithm with a dictionary for translations to other languages, with the help of historians
capable of translating Palmyrene Aramaic. We believe that our system can significantly
improve the awareness of Palmyrene history to the general public, as well as speed up
text recognition of newly discovered Palmyrene texts by researchers.

7 Conclusion

We have created a segmentation dataset of Palmyrene alphabet, which has several scien-
tific contributions, namely increasing preservation and accessibility of Palmyrene arti-
facts and creating a cornerstone for the Palmyrene OCR system. As Palmyrene inscrip-
tions are a valuable source of information about the culture, history, and language of
ancient Palmyra, by creating a segmentation dataset of these inscriptions, we can make
them more accessible to a wider audience, including scholars, students, and the general
public.
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ABSTRACT

This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene
inscriptions, employing two state-of-the-art deep learning algorithms, namely YOLOv8 and Roboflow 3.0. The
goal is to contribute to the preservation and understanding of historical texts, showcasing the potential of modern
deep learning methods in archaeological research. Our research culminates in several key findings and scientific
contributions. We comprehensively compare the performance of YOLOv8 and Roboflow 3.0 in the context of
Palmyrene character segmentation—this comparative analysis mainly focuses on the strengths and weaknesses
of each algorithm in this context. We also created and annotated an extensive dataset of Palmyrene inscriptions, a
crucial resource for further research in the field. The dataset serves for training and evaluating the segmentation
models. We employ comparative evaluation metrics to quantitatively assess the segmentation results, ensuring the
reliability and reproducibility of our findings and we present custom visualization tools for predicted segmentation
masks. Our study advances the state of the art in semi-automatic reading of Palmyrene inscriptions and establishes
a benchmark for future research. The availability of the Palmyrene dataset and the insights into algorithm
performance contribute to the broader understanding of historical text analysis.

KEYWORDS

Optical character recognition; instance segmentation; Palmyrene; ancient languages; computer vision

1 Introduction

Palmyra, known as Tadmur in Arabic, is an ancient city located in the Syrian desert. It is also
an essential part of human history. Its archaeological significance lies not only in its physical ruins,
but also in the inscriptions carved into the buildings and into the funerary stelae. These inscriptions
represent a valuable repository of knowledge that records the Palmyrene dialect of Aramaic, its
culture, and the records of ancient Palmyrene society. However, uncovering the secret written on these
inscriptions poses challenges for the scientific community.

This work is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.
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Deciphering and analyzing these historical texts have interested scientists, historians, and archae-
ologists for generations, and until now it has only ever been done by linguists, not by machines.
Therefore, applying deep learning (DL) methods is a transformative force, making the work of linguists
easier and allowing the non-scholarly public access to texts that would otherwise be incomprehensible
to them. Deep learning algorithms, including deep neural networks, offer automation in letter classi-
fication and segmentation, which can be a potential solution to the complexity of the transcription of
Palmyrene inscriptions.

Previous research [1] dealt with classifying Palmyrene characters from handwritten transcripts
and photographs and their augmentation [2]. It addressed the classification in two ways. The first way
is to divide a dataset of Palmyrene characters into squares that each contain one letter; the second
way is to handwrite an EMNIST-like dataset using special software and a mouse pen tablet and then
make both classifiers available in an Android mobile application and an online application [3], using
a custom neural network which was chosen as the best performing from 10 different architectures.
As photographs classification did not achieve satisfactory results initially, Generative Adversarial
Networks (GAN) are employed to expand the classification dataset, improving the outcomes by 120%.
The research plan for segmenting Palmyrene characters was presented at a conference in 2023 [4].

Based on deep learning principles, this study aims to evaluate and compare the performance of
state-of-the-art DL instance segmentation algorithms in Palmyrene character segmentation. Through
data collection in collaboration with several museums worldwide, photo analysis, pre-processing, man-
ual review of published transcriptions, and custom annotation in the Roboflow annotation platform,
the computing power of DL is employed to solve the unique challenges posed by transcriptions of
ancient inscriptions.

2 Structure
The article is structured as follows:

Section 3—Related Work-presents other works that describe developing an ancient or alive
language Optical Character Recognition (OCR) and comment on the proposed methods. It also
presents other relevant studies that utilize instance segmentation and the research gap.

Section 4—Data Collection and Preparation-describes how the data were obtained from the
museums, checks the published transliterations to indicate if they align with the photographs, and adds
the transliterations to photos that did not have them available. It also describes the pre-processing and
annotation process and its challenges and defines the number of classes to work with.

Section 5—Methodology-introduces two approaches-single-and multi-class segmentation-and
algorithms used-YOLOvVS8 and Roboflow 3.0. It explains the advantages and disadvantages of each
method and describes the training, hyperparameters, and evaluation metrics. It also presents the
custom scripts developed for letter sorting and visualization.

Section 6—Results-includes individual network training, testing, quantitative metrics, and visual-
ization of results.

Sections 7 through 9 discuss the results, next steps, and conclusion. At the end, statements,
acknowledgments, and references are presented, followed by Appendices A and B that provide details
of the models’ training and testing.
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3 Related Work

Developing OCR or Natural Language Processing (NLP) algorithms for languages lacking
existing solutions is an essential part of preservation and making it easier to process documents in
that given language. This applies to historical texts, such as Egyptian hieroglyphs [5], Sanskrit [6], and
different types of cuneiform [7] and living languages.

For instance, a Turkish OCR system [8] employs commonly available OCR algorithms-CuneiForm
Cognitive OpenOCR, GNU License Open-source Character Recogniton (GOCR), and Tesseract [9]-
to handle a dataset consisting of scans and photos of Turkish texts. Another was designed for Icelandic
to aid in digitizing the Fjolnir magazine, housing historical texts [10]. Character recognition has also
been developed for Bangla [1 1], presenting unique challenges due to the variability of characters and
the presence of ligatures (conjunctions of characters). Oni et al. [12] developed an OCR algorithm
based on generated training data. They scanned images of Yoruba texts written in Latin script and
reached 3.138% character error rate using the Times New Roman font.

There are comparative performance studies for or languages with many OCR systems available,
either of the whole systems [13] or separate languages, such as Arabic [14].

Using instance segmentation algorithms for character detection can be effective in image-based
tasks involving handwriting, as opposed to OCR for scanned text, where semantic segmentation is
employed to separate text from background, e.g., in the case of Czechoslovak scanned documents
[15]. Instance segmentation using Convolutional Neural Networks (CNNs) is applied to detect the
boundaries of individual objects. It is usually used for other tasks, such as segmenting leaves in plants
[16], cars in a parking lot [17], or ships and airplanes from satellite images [1§].

Although instance segmentation algorithms are usually used for tasks other than letter segmen-
tation, they also have a high potential to find letters in photographs. Instance segmentation can make
it possible to recognize characters in different font styles and photographs of various quality if a large
enough dataset is available, and it is not necessary to separate the text from the non-text part.

4 Data Collection and Preparation
4.1 Obtaining Data

Photographs of Palmyrene inscriptions were obtained from several private sources with their
consent, from public online sources, and by taking photographs in the respective museums. The pho-
tographs of inscriptions originate from Arbeia Roman Fort and Museum', Archaeological Museum
of Palmyra’, The British Museum’, Carlsberg Glyptotek’, Hypogeum of Three Brothers’, MET
Museum®, Musée du Louvre’, Musei Vaticani’, Museum of the American University, Beirut’, The
Getty Villa Museum'’, National Museum in Prague'', Royal Ontario Museum'’, The Pushkin State
Museum of Fine Arts'’ and The State Hermitage Museum .

Thttps://arbeiaromanfort.org.uk/.
2https://virtual-museum-syria.org/palmyra/.
3https://www.britishmuseum.org/.

4https://glyptoteket.dk/.
Shttps://archeologie.culture.gouv.fr/palmyre/en/mediatheque/hypogeum- three-brothers-palmyra-7.
6https://www.metmuseum.org/.

Thttps://www.louvre.fr/en.
8https://www.museivaticani.va/content/museivaticani/en.html.
https://www.aub.edu.lb/museum_archeo/Pages/default.aspx.
W0https://www.getty.edu/visit/villa.

Uhttps://www.nm.cz/en.

12]111\\\ [l[www.rom.on.ca/en.
3https://pushkinmuseum.art/?lang=en.

14https://www.hermitagemuseum.org/wps/portal/hermitage/.


https://arbeiaromanfort.org.uk/
https://virtual-museum-syria.org/palmyra/
https://www.britishmuseum.org/
https://glyptoteket.dk/
https://archeologie.culture.gouv.fr/palmyre/en/mediatheque/hypogeum-three-brothers-palmyra-7
https://www.metmuseum.org/
https://www.louvre.fr/en
https://www.museivaticani.va/content/museivaticani/en.html
https://www.aub.edu.lb/museum_archeo/Pages/default.aspx
https://www.getty.edu/visit/villa
https://www.nm.cz/en
https://www.rom.on.ca/en
https://pushkinmuseum.art/?lang=en
https://www.hermitagemuseum.org/wps/portal/hermitage/

4 CMES, 2024

4.2 Checking Transcriptions

Prior to the annotation, the collected photographs were checked. For each photo, the visible letters
were checked. For some photographs, previously published transcriptions were available and edited to
match the visible characters in the photographs. For those photographs that did not have transcripts
available, transcripts were created.

4.3 Annotation and Pre-Processing

The annotation of the instance segmentation dataset was based on the checked and newly created
transcriptions and was completed in the Roboflow annotation tool using 26 classes corresponding
with the Palmyrene characters. Table | shows the complete list.

Table 1: Palmyrene character classes in multi-class segmentation

Classindex Classname  Transcription  Palmyrene

0 One 1 )

1 Ten 10/100 —
2 Twenty 20 3
3 Aleph ? N
4 Ayin Y Y
5 Beth b |
6 Gimel g IN
7 He h A
8 Heth h )\
9 Kaph k |
10 Lamedh 1 Y
11 Mem m A
12 Nun n J
13 Nun_final n 9
14 Pe p |
15 Qoph q )
16 Resh/daleth  r/d 4
17 Right > ©
18 Sadhe $ i
19 Samekh S o}
20 Shin S 12
21 Taw t h
22 Teth t 6
23 Waw W 1
24 Yodh y ~
25 Zayin v/ \
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The characters “left” < and “right” « are paratextual signs similar to punctuation marks.
Traditionally, they are labeled “ivy leaf” and put either at the beginning or at the end of a line, or
a whole text in Palmyrene Aramaic and Greek inscriptions. Generally, the “left” ivy leaf is used much
more often than its right counterpart.

The character “left” < was not present in any of the photographs, so it was excluded from the
class list, but it was included in the classification dataset. The characters “resh”*\ and “daleth” "\ were
combined into a single class because they are often written identically, with their distinction depending
only on the context. Sometimes, “resh” 9 is marked with a dot above. However, a segment must be a
continuous object. Hence, the dot will make a separate segment. There are some dotted “resh” 4 in
the dataset, but they are a minority compared to the volume of those that are not dotted.

The same blending applies to characters “10” and “100”, “5” and “ayin”. In some visual variants,
this also applies to the pair “mem” and “qoph” and the pair “heth” and “sadhe”, however, they were
preserved as a separate class, as other visual variants are distinguishable.

5 Methodology
5.1 Instance Segmentation

Segmentation is the most intricate of the three computer vision tasks: classification, object
detection, and segmentation [19]. It involves pixel-level classification, where pixels are grouped based
on the selected class, revealing the precise boundaries of objects. There are two main types of
segmentation: semantic segmentation, which clusters pixels belonging to the same class regardless
of whether objects overlap, and instance segmentation, which identifies individual instances of objects
within the same class. Instance segmentation determines the outlines of each instance based on factors
such as shape, texture, brightness, and color [20].

During the training of an instance segmentation model, four types of losses are minimized in
parallel, including box, segmentation, class, and distributional focal (box_loss, seg_loss, cls_loss,
df1_loss). The box loss measures the difference between predicted bounding box coordinates and the
ground truth bounding box coordinates for each object instance, typically calculated as smooth L1
loss. The segmentation loss quantifies the difference between the predicted segmentation mask and the
ground truth mask for each object instance. The class loss describes the variation between predicted
class probabilities and the true class labels associated with each object instance. It is typically computed
using a categorical cross-entropy loss function. The distributional focal loss is a modified version of
the focal loss employed to solve the class imbalance problem. More information about the losses can
be found in the literature [21].

This study uses two approaches to extract text from a photo using instance segmentation.

5.1.1 Single-Class Instance Segmentation

The first approach aims to segment letters regardless of their class and semantic meaning. Hence,
the identified segments are ordered as text (right to left, top to bottom), and plotted one by one in
the empty images (as described in Section 5.4, Custom Tools). These individual images are input
for classification, and the classified features in the correct order form the entire text in the photo.
This approach of looking for segments in only one class greatly increases the chance of finding more
segments since the neural network only looks for one class.
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5.1.2 Multi-Class Instance Segmentation

The second approach uses multi-class segmentation. Each letter is identified separately in the
dataset, making it more accurate to find them and draw more correct segmentation masks. However,
many letters are underrepresented in the dataset, so the segmentation algorithms do not find them and
miss them entirely in the resulting text transcription. This problem will be solved through a significant
dataset extension, which is currently in progress.

5.2 Selected Segmentation Models, Their Advantages and Disadvantages, Hyperparameters and
Training

This study selected two instance segmentation algorithms. A comparison between YOLOvVS8 and
Mask Region-based Convolutional Neural Network (R-CNN) was presented in 2023 [22] and showed
that YOLOvV8 performs better on selected images from fish-eye cameras. Like the images of the
sandstone tablets with the Palmyra inscriptions, these images are of lower quality, and YOLOVS can
find more objects than the more accurate R-CNN. Roboflow Train was also chosen because this
company offers dataset management, integrates an annotation tool, and offers data augmentation
directly in the application. Thus, training directly in this particular application is relevant as the dataset
was annotated there.

5.2.1 YOLOvS

YOLO, short for You Only Look Once, was released in 2016. It belongs to the category of one-
shot detectors, which are generally less accurate but very fast, contrary to two-stage detectors, which
are more accurate and slower [23]. YOLO has been under development for multiple years by Redmond
et al. [24-26] until he decided to retreat from the research in fear of potential misuse by social media
companies and the military; however, other teams took over his work. The first version of YOLO to
incorporate instance segmentation was YOLOVS in September 2022 [27]. It was developed by Glenn
Jocher as an object detection algorithm [28]. The most contemporary version-YOLOVS, includes
instance segmentation from January 2023 [29].

The main advantages of using YOLO are its training and inference speed, but it generally comes
with lower accuracy.

The selected YOLOVS instance segmentation model comprises 261 layers, 11800158 parameters,
11800142 gradients, and 42.7 GFLOPs. The complete architecture overview is indicated in Table Al in
Appendix A. The initial weights “yolov8n-seg.pt” are trained on the COCO dataset, and the transfer
learning technique is used.

5.2.2 Roboflow 3.0 Instance Segmentation ( Accurate)

Roboflow Train 3.0 is a model included in the Roboflow web application, released in July 2023
[30]. There are two options: fast or accurate training. However, the company has not publicly disclosed
technical specifics about the structure and architecture. The main advantages are the simplicity of use
and remote training, and the disadvantages are the lack of control over the model, as the only options
the user can influence are the model type and providing a custom dataset with selected augmentation
options.

5.3 Evaluation Metrics
Each Palmyrene text within a photo examines whether the correct number of characters is
identified and whether the characters are correctly classified. Error analysis can be performed for
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three main types of errors within the OCR transcription of a whole test set, and more derived metrics
can be used. The following errors can occur when processing a test dataset:

o Insertion Errors: The system found a character where there was none. This study denotes the
number of these errors as /.

e Substitution Errors: The system found the character in a certain location but misclassified it.
This study denotes the number of such errors as S.

e Deletion Errors: There was a character at that location, but the system found no character at
that location. This study denotes the number of these errors as D.

o Total Levenshtein Distance: The total number of errors that occurred during the processing of
the test data set is:

TLD=I+D+S (1)

where TLD is the Total Levenshtein Distance. The Levenshtein Distance, also known as the Edit-
Distance algorithm, measures the number of characters that must be changed, added, or deleted in
the predicted word so that it matches the true word [31]. Total Levenshtein distance does not apply to
a word; it applies to the whole text.

o Total Character Accuracy: In addition to the Total Levenshtein Distance, the system’s behavior
will be evaluated using the Total Character Accuracy metric, which will rate the overall quality
of the transcript. This study denotes the total number of letters as N and the Total Character
Accuracy as TCA, where:

TOA — 100- (N —S—D) ?)
N

Thus, TCA determines the percentage of characters correctly found and correctly classified in
the test dataset. The TCA value does not depend on the number of insertion errors /. Therefore, the
value of the I parameter or the Total Levenshtein Distance that incorporates the / value must also be
considered when evaluating the system’s overall quality.

5.4 Custom Tools
The image is processed to text, as shown in Fig. 1.

5.4.1 Prediction Scripts

Due to the use of two segmentation methods and, thus, four different models, the characters in
images are predicted in multiple ways. However, a 40% confidence score is always set as a threshold.

This study predicts using the stored model on the web server for single-class segmentation using
YOLO. It obtains a list of identified segments labeled as “1” only (meaning a character). These are
then sorted by the developed program from right to left, top to bottom (see Section 5.4.3 Sort), and
after sorting, they are printed on a square image (Section 5.4.3 Draw), which is input to the classifier,
classifying them in that order and outputs the resulting text.

For single-class segmentation using Roboflow, we use the Roboflow API snippet to predict the
segments. The segments are then converted to YOLO format, and the subsequent procedure is identical
to YOLO single-class segmentation.
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Query image file

'

single-class _Model\ multi-class
instance 4 S instance
segmentation 7 selecmn segmentation
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Figure 1: Palmyrene character instance segmentation-process flow diagram

Multi-class segmentation using YOLO uses a second model stored on the web server, the outputs
are segments already assigned to the appropriate characters. These are further sorted, and the resulting
text is obtained directly from the sorting tool. When using the last model, Roboflow multi-class
segmentation, the predictions from the “.json” format are converted to the Yolo format. Then, the
segments are sorted to produce the resulting text.

5.4.2 Detecting Rows and Sorting Letters

Classical line detection algorithms for scanned documents assume that the lines are straight, and in
handwritten documents [32], line detection is performed in the original image before detecting separate
letters. Another successful approach to detect lines in documents is to use Google Tesseract [33], but
it does not support the Palmyrene language. The traditional algorithms assume text linearity and
regularity, which is absent in the historical texts captured in the photographs of sandstone inscriptions.
Such handwriting has considerable variability, which causes irregularities in spacing, angles of lines,
and diverse styles, which were unique to each person. Palmyrene also uses irregular fonts in some cases.
It was, therefore, necessary to address the issue in a specific manner.

The study cannot use either of the mentioned approaches because they are not intended to sort
polygons already detected by YOLO or Roboflow Instance Segmentation. Since these polygons are
restored from photographs, the rows in the images are ambiguous and not always straight.
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At first, the algorithm in sort.py reads polygon information in YOLO instance segmentation
format (the class index, points as x, y coordinate tuples, and confidence score). If the format is different,
the variant sort_json.py is used, and subsequently, the output is converted for further processing by
another custom script json_to_yolo.py. The sorting principle is as follows:

1. The average height /2 of the polygons (x,,y,) is determined (see Fig. 2).
2. Polygons are sorted in descending order according to their y; coordinate.
3. Splitting into rows: For all pairs of polygons ((x;, y,), (Xi41, Yir1)), i = 1, ..., n—1, we determine,
whether
Vi =yl > 05-h 3)

If the result of the inequality is true, y; becomes the last polygon of the current row and y,,, becomes
the first polygon of the subsequent row.

4. Polygons (x;, y;), i =1, ..., n, are arranged in each row based on the size of the x; coordinate in
descending order (the Palmyrene text is read from right to left).

Finally, the output text is printed, and the sorted polygons are saved to the file whose name was
specified when the script was run.

X
L.
Ll

Yy

Figure 2: Coordinates (x;, ;)

5.4.3 Visualization Tools
Sort
The sorting tool includes plotting the polygons and class names in a plot, as depicted in Fig. 3.
Draw

draw.py visualizes separate polygons, which are printed into a black-and-white binary image in the
correct order, which is an input to classification. The relative coordinates of the polygons (obtained
by YOLO or converted to YOLO format from the “.json” format used by Roboflow 3.0) are scaled
to match the size of the original image. The algorithm processes each polygon in the dataset. It scales
the polygon’s relative coordinates to fit the original image’s size. Then, the polygons are drawn as
white letters into a black image in the original polygon size. Subsequently, the polygons are cropped
or stretched to a target size (80 x N or N x 80) based on the aspect ratio of the polygons and put in
the center of a 100 x 100 black image, which is saved with a filename that indicates the polygon index.
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The output of this tool is illustrated in Fig. 4. Then, the letters are classified using the classification
prediction script, resulting in a final list of transcribed letters.

Sorted Polygons Sorted Polygons
0.2 1 0.2 4
? m ? 1
a - 1 1
0.4 1 0.4
t e b 1 3 1

0.5 0.5 -
2 3
k= =4
o o
S 06 S 0.6 1
> *

b ¥ N . 1 3 5

RS IR L

0.8

b 1
L h 1 1
01 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08
X-coordinate X-coordinate

Figure 3: Plotted polygons from YOLO multi-class and single-class predictions of a photo of
“Inv.1438/8582, Archaeological museum of Palmyra”, generated by sort.py tool
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Figure 4: Plotted and sorted polygons for classification

6 Results
6.1 Training Results

The models were trained on the dataset consisting of 119 images with 3578 hand-annotated
Palmyrene characters, resized to 920 x 920 pixels, and augmented to triple the dataset size using the
following augmentation options:

e Grayscale: Apply to 50% of images

e Saturation: Between —60% and +60%

e Brightness: Between —11% and +11%

e Exposure: Between —11% and +11%

e Blur: Up to 1.25px

The value of the loss functions box_loss, seg_loss, cls_loss, and dfl_loss on the training set steadily
decreases during the learning process.

The values of the four loss functions on the validation datasets oscillate, but their mean values
also reduce. The smoothest decrease of the validation loss functions can be observed on the YOLOVS
multi-class model and the most random changes on the Roboflow 3.0 single-class model. The
detailed training —A8 are provided in . lists the training results of each
segmentation algorithm after the first and last epochs are rounded to 2 decimal places. There are 100
epochs for the YOLOvV8 model and 120 epochs for the Roboflow model.
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Table 2: Training of all models in the first and last epoch

Model Roboflow 3.0  YOLOv8 Roboflow 3.0  YOLOv8
multi-class multi-class single-class single-class

Firstepoch  box_loss 1.56 1.11 1.15 2.28
seg_loss  2.91 2.12 2.21 4.63
cls_loss 2.97 0.95 0.97 3.30
dfl_loss  1.23 0.95 1.04 1.59

Lastepoch  box_loss 0.31 0.68 0.62 0.84
seg_loss  0.85 1.57 1.36 1.71
cls_loss 0.30 0.48 0.39 0.48
dfl_loss  0.14 0.85 0.86 0.87

6.2 Evaluation Results

The success of single-class segmentation with subsequent classification and multi-class segmen-
tation was evaluated on six images with Palmyrene inscriptions with 216 characters. Each image
was analyzed for errors specified in the Section 5. Only images with clear inscriptions were selected
for the test, as the models did not perform well on lower-quality images. Tables A2—A7 include the
original texts and comparisons to predictions available in Appendix B and a summary is present in
Table 3. Original text in [brackets] indicates letters that are not visible in the photo but are part of the
inscription. Errors in the predicted texts are labeled in the texts as follows:

Table 3: Overall evaluation of all models

YOLO YOLO Roboflow Roboflow
single-class multi-class single-class multi-class
Insertion Errors 9 6 0 8
Deletion Errors 2 7 10 17
Substitution Errors 47 7 60 5
Total Character 77.3% 93.5% 67.6% 89.8%
Accuracy
Total Levenshtein 58 20 70 30
Distance

(1) insertion errors: bold and underlined, (2) substitution errors: bold, (3) deletion errors: bold dash
-. All plotted figures with texts generated by the sorz.py tool are available on GitHub [12].

7 Discussion

The results indicated that the Roboflow 3.0 multi-class model should be theoretically best
performing as the losses in the last epoch are the least of all trained models. However, it ultimately
achieves a Total Levenshtein Distance of 30 and a Total Character Accuracy of 89.8%, placing
this model in second position. The subsequent tests showed that the YOLO multi-class instance
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segmentation model performs best with the least Total Levenshtein Distance of only 20 and the highest
Total Character Accuracy of 93.5%. The evaluation of both these models proved that using the multi-
class segmentation method attains satisfactory results because the predicted segmentation mask shapes
are very accurate.

However, the single-class instance segmentation method with consecutive classification is insuffi-
cient for practical use as the Total Character Accuracy reached only 77.3% for the YOLO single-class
instance segmentation model, and its Total Levenshtein Distance was too high with the value of 58,
due to a high number of misclassified characters. The Roboflow single-class model reached 67.6%
Total Character Accuracy with a Total Levenshtein Distance of 70.

Although the classifier of handwritten Palmyrene characters, which was utilized to classify the
predicted polygons created from instance segmentation masks, reached over 98% for classifying
handwritten characters [1], the issue causing the misclassification can be the thickness of the lines,
as the classifier was trained on artificially written characters with a fixed line thickness, which was
significantly smaller. Sometimes, the predicted segmentation masks were very wide. Also, some of the
predicted segments had incomplete shapes.

The best performing (YOLO multi-class) model was implemented in the web application ML-
research [3] under the tab “Segmentation & Transcript”.

The average accuracy of the OCR of Egyptian hieroglyphs was 66.64%, surpassing the state of
art, which was 55.27% before that [9]. Arabic character recognition using Deep Belief Network (DBF)
and Convolutional Deep Belief Network (CDBF) was 83.7% accuracy on the IFN/ENIT Database
on a model that reached 97.4% accuracy during training [34]. A Holography graph neuron-based
system (HoloGN) for handwritten Persian characters [35] was over 90% accuracy when using a dataset
extracted from 500000 images of isolated Farsi characters written by hand by Iranian people, but only
45% on images downsized to 32 x 16 pixels due to memory use optimization when using feedforward
Artificial Neural Network (ANN). By comparing this study’s results to those of others in historical
alphabets OCR, the proposed algorithm performed well with 93.5% accuracy when used on high-
quality images of Palmyrene inscriptions.

8 Limitations and Next Steps

Some limitations can be encountered when using instance segmentation algorithms to identify
Palmyrene characters in photographs. A possible problem arises from underrepresenting some char-

9% e .Y

acters in the training dataset. Although some letters such as “b”, “d/r”, “y” and “1” occur in almost

b 1Y

every inscription, others such as “left”, “right”, “pe” and “samekh” appear quite rarely.

In the case of single-class instance segmentation, a limitation is the occasional inaccurate identifi-
cation of polygons derived from the segmentation masks of letters, which can cause the character to be
assigned to a different class than the one to which the letter belongs during subsequent classification.
In order to address this problem, the polygons can be added to the training subset, and the handwritten
character classifier can be retrained. This is subject to testing as it can bias the results of handwriting
classification.

When choosing multi-class segmentation, there is a potentially higher risk of encountering
deletion errors-missing some letters-especially for the Roboflow Instance Segmentation model. Since
this type of segmentation expects very accurate character shapes presented to it during training, this
can lead to missed letters in the recognized text when predicting texts in new images.
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In the next steps of this research, the focus will be on integrating natural language processing
(NLP) techniques to combine identified letters into words and sentences and to enable translation into
other world languages. Developing an NLP module that interprets contextual relationships between
characters requires collaboration with experts in the Palmyrene language. Continuous and dynamically
updated expansion of the dataset by including photos of Palmyrene inscriptions with newly created
transcriptions will ensure refinement of the current models and experiment with all possible data
augmentation options. The study hopes to include the data in standard OCR training datasets, making
it easily accessible for further experiments.

9 Conclusion

This study creates an instance segmentation model, which can identify and transcribe letters within
high-quality photos of Palmyrene inscriptions with an accuracy of 93.5%, a significant step towards
developing a Palmyrene OCR algorithm.

The development of tools capable of reading the characters and texts of dead languages has
impactful sociological importance, as it links the past and the present. Inscriptions in dead languages
carry information about important aspects of human history, in the case of Palmyrene Aramaic,
recorded in the funerary, honorific, and dedicatory texts. By establishing OCR technology for this
language, the potential for understanding ancient texts is expanded to a wider range of linguists,
historians, archacologists, museum keepers, and possibly even the non-scholarly public.

The final goal of humanists and linguists is to decipher the letters individually and understand the
entire inscriptions and contextual meaning, which is not a simple objective that can be accomplished
with a single computational task. However, this research is an essential step towards deciphering the
texts in Palmyrene Aramaic, and the methodology used can be applied to the analysis and extraction
of characters from other alphabets that do not use ligatures. The letters can be spatially separated from
each other.
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Appendix A—Training Details
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Figure A1: YOLOv8 multi-class training loss
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Figure A2: YOLOv8 multi-class validation loss
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Figure A3: Roboflow 3.0 multi-class instance segmentation (accurate) training loss
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Figure A4: Roboflow 3.0 multi-class Instance segmentation (accurate) validation loss
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Figure AS: YOLOVS single-class training loss
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Figure A6: YOLOVS single-class validation loss
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Figure A7: Roboflow 3.0 single-class Instance segmentation (accurate) training loss
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Figure A8: Roboflow 3.0 single-class Instance segmentation (accurate) validation loss

Table A1l: YOLOVS layers overview

Index From n Params Module Arguments

0 —1 1 928 ultralytics.nn.modules.Conv [3, 32, 3, 2]

1 —1 1 18560 ultralytics.nn.modules.Conv [32, 64, 3, 2]

2 —1 1 29056 ultralytics.nn.modules.C2f [64, 64, 1, True]

3 -1 1 73984 ultralytics.nn.modules.Conv [64, 128, 3, 2]

4 -1 2 197632  ultralytics.nn.modules.C2f [128, 128, 2, True]
5 -1 1 295424  ultralytics.nn.modules.Conv [128, 256, 3, 2]

6 —1 2 788480  ultralytics.nn.modules.C2f [256, 256, 2, True]
7 -1 1 1180672 ultralytics.nn.modules.Conv [256, 512, 3, 2]

8 . | 1 1838080 ultralytics.nn.modules.C2f [512, 512, 1, True]
9 —1 1 656896 ultralytics.nn.modules.SPPF [512, 512, 5]

10 —1 1 0 torch.nn.modules.upsampling. Upsample [None, 2, ‘nearest’]
11 [—1, 6] 1 0 ultralytics.nn.modules.Concat [1]

12 —1 1 591360 ultralytics.nn.modules.C2f [768, 256, 1]

13 —1 1 0 torch.nn.modules.upsampling. Upsample [None, 2, ‘nearest’]

(Continued)
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Table A1 (continued)

Index From n Params Module Arguments

14 [—1,4] 1 0 ultralytics.nn.modules.Concat [1]

15 -1 1 148224  ultralytics.nn.modules.C2f [384, 128, 1]

16 -1 1 147712  ultralytics.nn.modules.Conv [128, 128, 3, 2]

17 [—1, 12] 1 0 ultralytics.nn.modules.Concat [1]

18 -1 1 493056  ultralytics.nn.modules.C2f [384, 256, 1]

19 -1 1 590336  ultralytics.nn.modules.Conv [256, 256, 3, 2]

20 [—1,9] 1 0 ultralytics.nn.modules.Concat [1]

21 —1 1 1969152 ultralytics.nn.modules.C2f [768, 512, 1]

22 [15,18,21] 1 2780606 ultralytics.nn.modules.Segment [26, 32, 128, [128, 256,
512]]

Appendix B—Training Details

Table A2: Real texts and transcriptions of “Inv. 1438/8582, Archaeological museum of Palmyra”, using
all models

Real text YOLO single-class  YOLO multi-class  Roboflow Roboflow
single-class multi-class

‘qm’ brt‘zyb  '<m’ brhzyb slkw ‘qm’ brt ‘zyb mlkw ‘ym’ brh ‘zyb mlky ‘qm’ brt rzyb mlkw

mlkw hbl sbz hbl sbz hbl

Table A3: Real texts and transcriptions of “Inv. 88.AA.50, The Getty Villa Museum”, using all models

Real text YOLO single-class ' YOLO multi-class Roboflow single-class Roboflow multi-class

mqy br m‘ny mqy br m‘n- mqy br m‘ny myy br m-ny mqy br mh'ny

Table A4: Real texts and transcriptions of “Inv. AO 2205, Musée du Louvre”, using all models

Real text YOLO YOLO Roboflow Roboflow
single-class multi-class single-class multi-class

nysn $nt [3] nyyn sny nysn Snt nysn $nh nysn Snt

[100] 53 gbr’  S5+1+4+1+1qbr’fy 5+1+1+1100+1 br*  54+141+1100br’ 5414141 10021
zhdbwl br

[d]y zbdbwl br 1 hr *hr$wr y 1bdbwl br y zbdbwl br br’

[..]hbrtrSwr  yny knmr’ dy h br ‘trswr y br *hrswr y 1zbdbwl br

bny kmr’ dy thg wibnyh bny nkmr’ dy bn- kmr? dy - br ‘trswr

1h wibnwhy B lh wibnwhy -h wlbn-hy bny kmr’ dy

Ih wibnw-y
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Table AS: Real texts and transcriptions of “Inv. 95.28, The MET Museum”, using all models
Real text YOLO Roboflow single-class ~ Roboflow
single-class multi-class multi-class
biyk Smh I'lm*  bryyk shh 'lmmg  bryk Smhn I'lmg  kr20k Smh I'lmg bryk hmh I'Im’
tb’ wihmn’ ‘bd ~ yk* Inhmn’ ‘kd tb? wrhmn’ ‘rbd  tk’ nrsmlm ‘kn -b’ wrh-" *bd

wmwd’ hggw br

yhyb’ bi yrhy
dk’ ‘1 hywhy

why’ “bwhy
w’hwhy byrh
qnyn s$nt 5.100
+40+3

wwm20wd’ hggw
kr 20h20yk’ bd
yrh20 dk’ ‘1 hywqy

1nh20’ *bwhy
w'hwhy byrh
glyw snt 5100 10

wmwd’ htrw br

yhyb’ br yrhy
dk’m ‘- hywhy

why’ “bwh’y
w’hwhy byrh
qnyw snt 5r 100
20—

nmnn’ hgg20 sr mhpk’

sr 20nh20 dk’ 11

h2020hw $20-’ “bnhn
-h20h- b20rh qs20r Sst

n 100 wnww-

wmwd’ h-w br

yhyb’ br -rhy
-k’ ‘1 hywh-

why’ “bwhy
w'hihwhy byrh
g-r $- 5100
20+20+1-

Table A6: Real texts and transcriptions of “Inv. 98.19.4, The MET Museum”, using all models

Real text YOLO single-class YOLO multi-class Roboflow Roboflow
single-class multi-class
hbl []g’ [br] zbd'th ‘bt h’ zbddqh hbl g’ zbd*th tb- g’ zbddqh sbl g’ zbddt’h

Table A7: Real texts and transcriptions of “Inv. 125024, The British Museum”, using all models

Real text

YOLO single-class

YOLO multi-class Roboflow

single-class

Roboflow
multi-class

’qm’ brt hbzy hbl

*qhz brh hbnp kws

’qm- brt
hb-y hbl

hqm- brh hbly kws ‘qmq- brt hbzy

hblr
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ABSTRACT

This paper presents a new method for computer-assisted recogni-
tion of horizontal strokes in photographs of cuneiform tablets with
90,52 % accuracy. The cuneiform script is the oldest attested writing
system in the world, used for over three thousand years throughout
the ancient Near East, primarily by the cultures of Mesopotamia
(modern Iraq). It was impressed on clay tablets and engraved on
stone slabs by writing strokes. Researchers have been trying to
speed up the process of reading the tablets using different meth-
ods, as manual copying of the tablets and their transliteration is
time consuming. This research, therefore, aims to recognize the
elementary components, i.e., the strokes, of cuneiform signs from
photographs of ancient cuneiform tablets, in order to enable effec-
tive OCR using the latest computer vision algorithms. The main
difference between other approaches and ours is that we work
directly with the two-dimensional photographs, instead of three-
dimensional models, as there are many more 2D images available
in public online repositories. The goal is to partly automate the
process of identifying and reading cuneiform signs, thus speeding
up the process of rediscovering these ancient texts and civilizations.
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1 INTRODUCTION

1.1 Previous work on cuneiform sign
recognition

Cuneiform writing consists of signs that are formed by combining
three types of strokes - horizontal, vertical, and oblique. Despite
this relative simplicity, cuneiform signs are hard to identify because
of their three dimensional character. From the inception of the
field, this was difficult to represent in a 2D format. Two solutions
were found: taking 2D images of cuneiform tablets or creating hand-
copies, 2D black and white drawings made by scholars of the tablet’s
strokes. In recent years, 2D images have become rather ubiquitous
and in sufficient quality for machine learning applications. The
largest repositories of such images are the British Museum, Louvre
Museum, Cuneiform Digital Library Initiative, and Yale Babylonian
Collection. 2D+ and 3D models of cuneiform tablets have also be-
come a possibility since the early aughts, although these are still
more expensive and labor-intensive to produce.

Previous research in identifying cuneiform signs or strokes have
used mostly 3D models. Two main research groups developed stroke
extraction through geometrical feature identification [1-3]. Mara
and Kromker [4] extracted strokes as Scalable Vector Graphic (SVG)
images, which practically created hand-copies automatically as
vector images. Hand-copies and 2D projections of 3D models were
used for querying signs by example, using convolutional neural
networks with data augmentation by Rusakov et al. [5]. Previous
work on 2D images has only recently started. Dencker et al. used 2D
images for training a weakly supervised machine learning model
in the task of sign detection in a given image [6]. Rusakov et al.
[7] used 2D images of cuneiform tablets for querying cuneiform
signs by example and by schematic expressions representing the
stroke combinations. No previous research has attempted to identify
strokes from 2D images.

1.2 Identifying strokes with mathematical
methods

In the first steps, we looked for methods of finding stroke features
(horizontal and vertical) using classic methods of working with
images. We designed a software, which will allow highlighting
of stroke characters using convolutional image filtering methods.
These are commonly used edge filters that allow the suppression of
the surroundings of the desired objects and highlight their edges.

In contrast to the classical filtering methods, which are based
on the gradient (brightness change) of the neighbouring pixels,
using a convolution mask shifted along the X and Y axis across
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Figure 1: Edge detection of cuneiform signs from a rare gold
tablet in the Yale Babylonian Collection (photo credit: Klaus
Wagensonner)

the image (pixel matrix), we used the edge orientations of the
highlighted characters. In our case, we used the properties of Hough
transformation [8], i.e., lines and their orientation.

Thanks to Hough lines, we can decide if the character we find is
really the one we are looking for. The stroke is oriented either hori-
zontally or vertically or at some other angle that can be described
by us. The classic edge detection filters emphasize the edge, but
due to the difference in the quality of images, sometimes a part of
the edge is left out and needs to be approximated. For such approx-
imation, the Hough line in the correct angle can help calculate the
missing parts of edges. Thus, based on the adjacencyj, it is possible
to highlight the object and, conversely, filter out the noise. By noise
we mean found edges that are not guided at the angle we require.

The image above then shows how the software works. However,
its use is limited by the manual work of the operator, who, based
on expert knowledge, sets the required parameters such as the
maximum connection length of adjacent edges, edge angles and
image brightness balance so that the results are distinctive and
easy to read. This solution is not ideal for automation, because
cuneiform tablets are photographed at different angles of light.
For example, certain settings that are suitable for the upper left
quarter of the image, will not be for the lower right, due to different
lighting conditions. Resetting the filter would highlight the lower
part but suppress the upper one. Thus, to automate this process, it
is necessary to supplement classical mathematical methods with
machine vision technologies based on artificial intelligence and
heuristic operations.

Of course, an automated solution cannot do without statistical
methods that quantitatively verify the accuracy of the technology
used. Machine vision technology based on artificial intelligence
brings several advantages.

The problem with artificial intelligence is the fact that it is not
possible to find out why the machine predicted the way it did.

While the outputs of algorithmic approaches are always clear, as
they are calculated based on input data and algorithm, in the case
of artificial intelligence the results are not predictable, as they are
gained by the process of learning. The results then need verifying
by quantitative (i.e., statistical) method.

It is therefore necessary to implement the following solution
scheme. Our goal is to suggest a suitable artificial intelligence tech-
nology, train it on labelled data created by our assyriological team
members, verify the ability of the network to recognize strokes of
cuneiform signs.

Adéla Hamplova et al.

1.3 Computer Vision and Neural Networks

Computer vision is a widely used method to identify objects in
pictures and is evolving rapidly. Computer vision is associated with
convolutional neural networks (CNN), also known as convnets in
which densely connected layers learn global patterns and convo-
lutional layers learn local patterns in small 2D windows [9]. The
most contemporary algorithms are, among others, YOLOv5 [10]
and Detecto SSD/ResNet [11]. Both algorithms are complementary:
while YOLOVS5 is using the library tensorflow, Detecto is using the
library torch.

YOLOVS5 is a complex solution created by ultralytics and is avail-
able on GitHub [10]. It contains a pre-trained network as well as a
training and detection script. The input images need to be square
and contain labels in .txt format. Detecto is another solution (avail-
able as a Python library). It uses a single shot detector (SSD) with
ResNet and like YOLO, it contains training and detection scripts.

With labelled data, we need to implement most contemporary
versions of several architectures of Convolutional Neural Networks,
one-stage, or two-stage models. For this, we use an open Python
platform Google Collaboratory or Kaggle and we evaluate the per-
formance of each architecture by standard measures such as recall
r (1), precision p (2), F-measure F (3).

_L (1)

P=Tp+Fp

r=—TP )
TP+ FN
2.r.p

F=2P 3
r+p ()

Where:

TP = true positives (real strokes, that have been correctly found)
FP = false positives (predicted strokes, that are not there in real)
FN = false negatives (real strokes, that were not found)

2 TRAINING AND EVALUATION OF YOLOV5
AND DETECTO

2.1 Dataset creation

To train high quality models, we need many manually labelled in-
put images. The recommended number of pictures for each class is
about 1000 [12]. Our assyriological team tagged thousands of hori-
zontal strokes in eight tablets from the Yale Babylonian Collection
(Table 1; made available through the kind permission of Agnete W.
Lassen and Klaus Wagensonner).

The full tablet images were split into squares of 416x416x3 pixels.
Then, they were labelled using the python software tool “labe-
IImg.py”, which creates files in xml format, each file containing
the name of the image, the path and the labels (Fig. 2). The labels
format is called Pascal VOC and consists of the coordinates x_min,
y_min, x_max and y_max and class name.

The dataset is made up of 823 labelled images with 7355 annota-
tion records. We used the augmentation platform Roboflow using
grayscale, saturation, and exposure augmentation. It contains 1700
images in the training set, 165 images in the validation subset and
82 testing images.
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Table 1: the eight tablets that were tagged and their metadata. The information is taken from the Yale Babylonian Collec-
tion website. The abbreviations for the publications of hand copies can be found through CDLI (https://cdli.ox.ac.uk/wiki/

abbreviations_for_assyriology).

Yale ID CDLIID material period genre hand copy publication

YPM BC 014442 P504832 clay Neo-Assyrian literary CT131,3

YPM BC 023856 P293426 clay Old-Babylonian literary JCS 122-23

YPM BC 002575 P297024 clay Neo/Late-Babylonian commentary BRM 4 24

YPM BC 016773 P293444 limestone Early Old-Babylonian inscription YOS 1 36

YPM BC 016780 P293445 limestone Early Old-Babylonian inscription YOS 135

YPM BC 016869 P429204 clay Middle Assyrian inscription YOS 9 71

YPM BC 021204 P308129 clay Middle Assyrian? medical text FS Sachs 18, no. 16

YPM BC 021234 P308150 clay Old-Babylonian hymn YNER 3 6-7

Table 2: Testing set results evaluation

Network YOLOvV5 Detecto
Precision 0,4211 0,7450
Recall 0,4353 0,7053
F-Measure 0,4281 0,8173
Fake of all strokes found 57,89 % 25,50 %
Correct 43,53 % 90,52 %
Correct of all strokes found 0,7450 0,9053

Figure 2: Example of training data created by the assyriologi-
cal team.

2.2 CNN training

In cases of both YOLOv5 and Detecto, we use training scripts with
alternation of the dataset only. For prediction, we need to edit the
script, so that the predicted images and labels are saved as files and
can be displayed and worked with without the limitation of using
prediction notebooks only.

The training of YOLOVS5 architecture (283 layers) was conducted
for 100 epochs at Google Collaboratory, using CUDA on GPU Tesla
T4 with 40 multiprocessors, 15109 MB total memory.

The training of Detecto SSD/Resnet (51 layers - ResNet 50
plus 1 Conv2D layer) was conducted on a pre-trained file
fasterrcnn_resnet50_fpn_coco-258fb6c6.pth by unfreezing some
layers and retraining them for 50 epochs at Google Collaboratory,
using the same GPU Tesla T4.

2.3 Evaluation

The evaluation results of the testing set can be seen in Table 2.
Detecto has found horizontal strokes with 90,53 % recall, while
YOLOVS5 reached 43,53 %. Example of such predictions can be seen

Figure 3: Detecto SSD/ResNet predictions

in Figure 3, where red boxes are predictions and green boxes are
ground truth labels.

2.4 Horizontal stroke results interpretation

From the results and evaluation, YOLOV5 is less successful than
Detecto. YOLOVS5 successfully identifies most strokes however the
false positive identifications exceed 50% (more than half strokes
are false), while in the case of Detecto it is only 25,5 % and 90,5
% is found correctly. The reason might be that YOLOVS5 is mostly
used in video processing so there is a lot of input data (for example
30 images per second) and it is not important if some frames are
detected incorrectly.

Shifeng et al. proved that two-stage detection models usually
achieve higher accuracy than one-stage models [13], which proved
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to be true even in case of Detecto and YOLOvV5, as Detecto is a
two-stage model and YOLOVS5 is a one-stage model.

2.5 Comparison with other authors’ works

In other research projects focused on similar topics - recognition of
objects from images using similar architectures - there are following
results.

Recognition of Bangladeshi signs with models constructed by
Ghosh et al’s [14], reached 96.46% accuracy on MobileNet. In Cho
Junghwan’s et al. research [12] of CT body scans they reached 97%
accuracy on GoogLeNet Inception v1 architecture. Their dataset
contained 4000 very high-quality images.

We have reached 98,21 % accuracy in classification of 2000
Palmyrene letters per class on custom CNN architecture with 4
Convolutional / Max Pooling blocks. [15]

2.6 Research next steps

Detection success rate can be improved with higher amounts of
labelled images and their variability (different light conditions,
colours, shadows) and if more augmentation methods are used.
Future plans include adding vertical and oblique strokes to the
training sets. We may also use oriented bounding boxes for oblique
strokes, but we will need to edit Detecto’s algorithm, so that it
can work with bounding box angles. We may also attempt to in-
crease the accuracy with different neural network architectures,
such as RCNN using selective search, as it usually reaches a better
detection rate. With new labelled data we can also start optimizing
neural networks configurations to reach the maximum accuracy
and have a better comparison, with RCNN included. There are
many experiments to be done such as observing the influence of
number of convolutional layers, number of ignored layers (transfer
learning), number of epochs, steps in epochs, learning rate, optimiz-
ing method, images depth. The accuracy can also be improved in
postprocessing phases. Early stopping with patience attribute may
be experimentally used and compared. Automation, logging, and
visualization are other tools that could help us reach better results.

3 CONCLUSION

We have compared mathematical methods (edge detection) and
artificial intelligence for object detection and chose to train an
object detection models.

Two neural network architectures YOLOv5 and Detecto were
developed to classify and localize horizontal strokes in cuneiform
tablet images divided into 416x416 squares. The classifier based on
Detecto reaches 90,5% accuracy, with 25% false positive predictions
while the classifier based on YOLOV5 scores a lower accuracy on
the cuneiform data.

Adéla Hamplova et al.
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Abstract

A vital part of the publication process of ancient cuneiform tablets is creating hand-copies, which are 2D line art
representations of the 3D cuneiform clay tablets, created manually by scholars. This research provides an innovative
method using Convolutional Neural Networks (CNNs) to identify strokes, the constituent parts of cuneiform characters,
and display them as vectors — semi-automatically creating cuneiform hand-copies. This is a major step in optical
character recognition (OCR) for cuneiform texts, which would contribute significantly to their digitization and create
efficient tools for dealing with the unique challenges of Mesopotamian cultural heritage. Our research has resulted in
the successful identification of horizontal strokes in 2D images of cuneiform tablets, some of them from very different
periods, separated by hundreds of years from each other. With the Detecto algorithm, we achieved an F-measure of
81.7% and an accuracy of 90.5%. The data and code of the project are available on GitHub.

1 Introduction
1.1 Cuneiform Texts and Artificial Intelligence

Cuneiform is one of the earliest attested writing systems, and for thousands of years cuneiform has also been the dominant script of the ancient
Middle East, a region stretching roughly from the Persian Gulf to modern Turkey's highlands, and south across the Levant into Egypt. Cuneiform
texts appeared from the end of the fourth millennium BCE until they fell out of use in the early centuries CE. The script was used for writing a
plethora of different documents: legal, administrative, and economic documents; correspondence between private individuals, or high-officials and
their kings; some of the oldest works of literature; royal inscriptions describing the deeds of great kings; as well as lexical and scientific compendia,
some of which form the basis of the Greco-Roman sciences the Western world is built upon today. Hundreds of thousands of cuneiform documents
have been discovered since excavations began in the 1850s. Recent estimates indicate the cuneiform text corpus is second in size only to that of
ancient Greek [Streck 2010].

The rising application of artificial intelligence to various tasks provides a prime opportunity for training object detection models to assist the digital
publication of cuneiform texts on a large scale. This will help set up a framework for cultural heritage efforts of preservation and knowledge
dissemination that can support the small group of specialists in the field.

Cuneiform provides unique challenges for object detection algorithms, particularly OCR methods. Cuneiform tablets, on which the texts were
written, are 3D objects: pieces of clay which were shaped to particular sizes. While the clay was still moist, scribes used styli with triangular edges
to create impressions on the clay in three possible directions: horizontal, vertical, or oblique (also Winkelhaken; see Figure 1). “Diagonal” strokes
are also found in the literature, but these are technically either another type of horizontal or an elongated oblique impression [Cammarosano 2014]
[Cammarosano et al. 2014] [Bramanti 2015]. Each of these impressions is called a stroke (or wedge, due to their shape). Combinations of different
strokes create characters, usually referred to as signs [Taylor 2015]. Cuneiform can be more easily read when there is direct light on the tablet,
especially from a specific angle that casts shadows on the different strokes.



Figure 1. The main cuneiform strokes taken from Neo-Babylonian signs, from left to right: AS
(https://labasi.acdh.oeaw.ac.at/tablets/glyph/detail/10341), DIS (https://labasi.acdh.oeaw.ac.at/tablets/glyph/detail/10474), and U or
Winkelhaken (https://labasi.acdh.oeaw.ac.at/tablets/glyph/detail/11430), as recorded in the LaBaSi palaeographical database.

From the inception of research in cuneiform studies, tablets were difficult to represent in a modern 2D publishing format. Two solutions were found:

» When possible, 2D images of cuneiform tablets were taken. However, for most of the field's history, such images were extremely
costly to produce and print, and they were often not in sufficient quality for easy sign identification (for the history of early photography
and cuneiform studies, see [Brusius 2015]).

e The second solution was creating hand-copies, 2D black and white line art made by scholars of the tablets' strokes. This was the most
popular solution. The disadvantage of this method is that it adds a layer of subjectivity, based on what the scholar has seen and on
their steady drawing hand. Nowadays these hand-copies are still in use, often drawn using vectors in special programs (the most
popular being the open source vector graphics editor Inkscape).

In recent years, the quality of 2D images has risen significantly, while the costs of production and reproduction dropped. A constantly growing
number of images of cuneiform tablets are currently available in various online databases. The largest repositories are the British Museum, the
Louvre Museum, the Cuneiform Digital Library Initiative, the Electronic Babylonian Library, and the Yale Babylonian Collection. 2D+ and 3D models
of cuneiform tablets have also become a possibility, although these are still more expensive and labour-intensive to produce [Earl et al. 2011]
[Hameeuw and Willems 2011] [Collins et al. 2019]; cf. overview in [Dahl, Hameeuw, and Wagensonner 2019].

Previous research of identifying cuneiform signs or strokes have used mostly 3D models. Two research groups have developed programs for
manipulating 3D models of cuneiform tablets: the CuneiformAnalyser [Fisseler et al. 2013] [Rothacker et al. 2015] and GigaMesh [Mara et al. 2010].
Each group developed stroke extraction through geometrical features identification, while one team also used the 3D models for joining broken
tablet fragments [Fisseler et al. 2014]. In addition, the GigaMesh team extracted strokes as Scalable Vector Graphic (SVG) images [Mara and
Kromker 2013], which practically means creating hand-copies automatically as vector images. This was used as a basis for querying stroke
configurations when looking for different examples of the same sign, using graph similarity methods [Bogacz, Gertz, and Mara 2015a] [Bogacz,
Gertz, and Mara 2015b] [Bogacz, Howe, and Mara 2016] [Bogacz and Mara 2018] [Kriege et al. 2018].

Work on hand-copies includes transforming raster images of hand-copies into vector images (SVG) [Massa et al. 2016]. Hand-copies and 2D
projections of 3D models were used for querying signs by example using CNNs with data augmentation [Rusakov et al. 2019]. Previous work on 2D
images has only recently started. Dencker et al. used 2D images for training a weakly supervised machine learning model in the task of sign
detection in a given image [Dencker et al. 2020]. Rusakov et al. used 2D images of cuneiform tablets for querying cuneiform signs by example and
by schematic expressions representing the stroke combinations [Rusakov et al. 2020]. A more comprehensive survey of computational methods in
use for visual cuneiform research can be found in [Bogacz and Mara 2022].

As there are no published attempts to extract strokes directly from 2D images of cuneiform tablets, the purpose of this paper is a proof of concept to
show it is possible to extract and vectorize strokes from 2D images of cuneiform using machine learning methods. The quantity and quality of 2D
images is improving, and for the most part they provide a more accurate representation of the tablet than hand-copies, as well as being cheaper
and quicker to produce in comparison to 3D models. Furthermore, since there are only three basic types of strokes, but hundreds of signs and
variants, one can label a significantly smaller number of tablets to attain a sufficient number of strokes for training machine learning models. The
resulting model will be able to recognize strokes in cuneiform signs from very different periods, separated by hundreds of years. This semi-
automation of hand-copies will be a significant step in the publication of cuneiform texts and knowledge distribution of the history and culture of the

ancient Near East. Our data and code are available on GitHub.["]

1.2 Object Detection

Identifying cuneiform signs or strokes in an image is considered an object detection task in computer vision. Object detection involves the automatic
identification and localization of multiple objects within an image or a video frame. Unlike simpler tasks such as image classification, where the goal
is to assign a single label to an entire image, object detection aims to provide more detailed information by detecting and delineating the boundaries
of individual objects present. Object detection algorithms work by analysing the contents of an image and searching for specific patterns or features
that are associated with the object. These patterns or features can include things like color, texture, shape, and size.

There are different types of computational models for object detection, ranging from the purely mathematical to deep learning models [Wevers and
Smits 2019]. Mathematical models often involve traditional computer vision techniques that rely on well-defined algorithms and handcrafted
features. These methods typically follow a series of steps to detect objects in an image. First is extracting relevant features from the image (edges,
corners, textures, or color information), where the algorithms are usually adapted based on domain knowledge. Then mathematical operations are
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performed to determine the location and extent of potential objects based on the identified features. Further methods can be used in post-
processing to refine the results. Computational methods work best in ideal or near-ideal conditions, meaning there needs to be standardization in
the types of cameras used for taking the images, the lighting situation, and the background. The objects themselves should also be as uniform as
possible in size, shape, and color. This means that in complex and diverse real-world scenarios, mathematical models are often insufficient for
satisfactory results.

Deep learning models, particularly convolutional neural networks (CNNs), have revolutionized object detection [Girshick et al. 2014]. Instead of
manual feature engineering used by mathematical models, deep learning methods can automatically detect relevant features and objects. The
models are trained on labelled data: a set of images where the objects of interest have been marked, usually in rectangular bounding boxes, by
humans. After training, the models can be tested and used on unseen images that were not in the labelled training dataset to detect the same type
of objects. Their biggest advantage is that they can handle a wide range of object shapes, sizes, and orientations, making them adaptable to
diverse scenarios, and generalize well across different datasets. The disadvantages of such models are that they require large amounts of labelled
data for effective training; they are more computationally intensive compared to traditional mathematical models, requiring more computational
power outside the scope of the average computer; and they are black boxes, meaning it is not always possible to explain why the model makes a
certain prediction or not.

In a previous research project, we combined the use of mathematical and deep learning object detection methods for wildlife mapping [Pavlicek
2018]. However, for this project, mathematical models proved insufficient for the complexity and variability of images of cuneiform tablets, which
include different tablet shapes, colors, broken sections, etc. Therefore, in this article we present our results on stroke recognition for 2D images of
cuneiform tablets using several deep learning models, and compare their advantages and disadvantages for this type of object detection on ancient
and complex writing systems.

1.2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are multilayer networks, specifically designed for processing and analyzing visual data. The convolutional
layers in the network process the input image through different filters that help the network detect features of interest like edges, corners, textures,
etc. The additional layers process the resulting feature maps to detect relevant combinations of features. There can be several iterations of
convolutional layers, depending on the specific architecture of the neural network used.

There are two main types of convolutional neural networks: two-stage detectors and single-stage detectors [Jiao et al. 2019]. Two-stage detectors,
like Faster R-CNN (Region-based Convolutional Neural Network), first identify regions of the image that might contain objects before analyzing
those regions more closely to detect objects [Girshick et al. 2014]. Single-stage detectors, like YOLO (You Only Look Once; [Redmon et al. 2016]),
can detect objects directly without first identifying regions of interest. In what follows, we provide a brief overview of the advantages and
disadvantages of both methods. See also [Mishra 2022].

1.21.1YOLO

YOLO, short for You Only Look Once, is a family of convolutional neural network architectures that was first introduced in 2015 by Joseph Redmon
et al [Redmon et al. 2016]. The version used in this paper, YOLOvV5, was published in 2020 [Jocher et al. 2020]. The YOLOV5 architecture consists
of 232 Iayers[Z], multiple convolutional layers that extract features from the image at different scales, and a series of prediction layers, which output
the object detection results.

The algorithm divides the input image into a grid of cells, with each cell responsible for predicting the presence of one or more objects. For each
cell, the network predicts the confidence score, which reflects the likelihood that an object is present, and the bounding box coordinates that
describe the location and size of the object.

The YOLOV5 algorithm has achieved state-of-the-art performance on several benchmark datasets. Its main advantage has been speed: YOLO
performs significantly faster than other CNN models. It has become a popular choice for a wide range of applications in computer vision, including
object detection in real-time video streams, autonomous driving, and surveillance systems. The latest version at the time of publication is YOLOvS.
[3]

1.2.1.2 R-CNN, Fast R-CNN, and Faster R-CNN

Region-based Convolutional Neural Networks (R-CNN) were first introduced in 2014 by Ross Girshick et al [Girshick et al. 2014]. This type of
detector has four key components: (1) it generates region proposals that suggest potential object locations in an image using a selective search
method; (2) it extracts fixed-length feature vectors from each of these proposed regions; (3) for each region of interest, it computes relevant features
for object identification; and (4) based on the extracted CNN features, the regions of interest are classified (see Figure 2).

R-CNN: Regions with CNN features
P = 3

> peron yes._]

N :
1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

Figure 2. The components of the R-CNN detector, from [Girshick et al. 2014].
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A year later, Girshick proposed a more efficient version called Fast R-CNN [Girshick 2015]. In contrast to R-CNN, which processes individual region
suggestions separately through the CNN, Fast R-CNN computes features for the entire input image at once. This significantly speeds up the
process and allows for better use of storage space for feature storage.

Building on the improvements of Fast R-CNN, Faster R-CNN was introduced just three months later [Ren et al. 2015]. It introduced the region
proposal network (RPN), which generates regions of interest (Rol), potential identifications of the desired objects. It does so by sliding a small
window (known as an anchor) over the feature maps and predicting whether the anchor contains an object or not. For this project, we used a
combination of Faster R-CNN and ResNet-50, a deep learning architecture that optimizes the network's performance. This model was implemented

by Bi in Detecto python library, using the PyTorch python framework.

2 Dataset and Evaluations
2.1 Dataset
2.1.1. Dataset Creation, Division, and Augmentation

The Assyriologists on our team tagged thousands of horizontal strokes in eight tablets from the Yale Babylonian Collection (see Table 1), made
available through the kind permission of Agnete W. Lassen and Klaus Wagensonner. For the first stage of research, we labelled 7,355 horizontal
strokes in the tablets chosen, divided into 823 images.

Yale ID CDLIID Material Period Genre Content Hand-Copy
Publication

YPM BC P504832  Clay Neo-Assyrian (ca. 911-612 Literary Enuma Eli$ Il. 1-16, 143- CT131,3

014442 BCE) 61

YPM BC P293426  Clay Old-Babylonian (ca. 1900- Literary Gilgamesh and Huwawa JCS 1 22-23

023856 1600 BCE) Il. 1-36

YPM BC P297024  Clay Neo/Late-Babylonian (ca. Commentary  Iqqur Tpu$ i 36, ii 31, iii BRM 4 24

002575 626-63 BCE) 22,iv5,v 13

YPM BC P293444  Limestone  Early Old-Babylonian (ca. Inscription Building inscription of YOS 136

016773 2000-1900 BCE) Anam, No. 4

YPM BC P293445 Limestone Early Old-Babylonian (ca. Inscription Building inscription of YOS 135

016780 2000-1900 BCE) Anam, No. 2

YPM BC P429204 Clay Middle Assyrian (ca. 1400- Inscription Inscription of ASSur- YOS 971

016869 1000 BCE) nadin-apli

YPM BC P308129  Clay Middle Assyrian? (ca. Medical Text FS Sachs 18, no.

021204 1400-1000 BCE) 16

YPM BC P308150  Clay Old-Babylonian (ca. 1900- Hymn Hymn to Inanna-nin-me- YNER 3 6-7

021234 1600 BCE) Sar2-ra, Il. 52-102

Table 1. Table showing the eight tablets that were labelled and their metadata. The information is taken from the Yale Babylonian
Collection website. “CDLI ID” refers to the catalogue number in the Cuneiform Digital Library Initiative database. The publication
abbreviations in the column labelled "Hand-Copy Publication" follow the Reallexikon der Assyriologie online list.

To train an artificial neural network, a dataset divided into training, validation, and test subsets needs to be created. In order to increase the number
of images in the dataset, several augmentation methods were used. The recommended number of images for each class is at least a thousand

images [Cho et al. 2016]. Roboflow!® is a web application used to create extended datasets from manually labelled data using labelling tools such

as Labellmg.[G]

For pre-processing, the images were divided into equal squares of 416 x 416 pixels (for Detecto and YOLOV5). For R-CNN, the size of images was
downsized to 224 x 224 pixels. For the final version of the model, the images were augmented using Roboflow. The final dataset contains 1,975

images with more than 20,000 labels. The augmented horizontal stroke dataset is available online.”!
2.1.2 Labelling Criteria

For machine learning purposes, the images of the cuneiform tablets needed to be split into squares of equal size (see Appendix). Labelling was
performed after splitting the images. This meant the loss of a lot of the context necessary to identify strokes with certainty. We used tablet images
with existing hand-copies, which were used as a guide and previous interpretations of the tablets.

However, a greater emphasis was given to what is currently visible on the image than what appears in the hand-copy. The hand-copies were not
always true to what is seen on the images for three main reasons: (1) the hand-copy preserves signs which were visible on the tablet at the moment
of their creation, but by the time the image was taken, they had eroded; (2) the camera angle when taking the image did not capture all the detail
the tablet contains. This is a common scenario, since signs at the edges of the tablet will not be seen as clearly when taking a frontal image; and (3)
strokes may have been cut off where the image was spilit.

If a stroke was completely unrecognizable as a horizontal stroke on the image at hand, because of either of the aforementioned restrictions, it was
not labelled. If enough of the characteristic features of the stroke (particularly its triangular head) were present on the image, it was labelled. Being
able to identify partially broken strokes is still useful for real-life scenarios, since the tablets themselves are often broken, a common problem in sign
identification.

Additionally, strokes which are usually considered diagonal were also labelled. A relative leniency was given to this issue, since in general, the lines
on cuneiform tablets are not always straight (i.e., creating a 90° angle with the tablet itself). Therefore, a horizontal stroke that may be exactly
horizontal when viewed in its line will appear diagonal on the image if the lines themselves are somewhat diagonal. For an example of labelled
images, see Figure 3.
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Figure 3. Training set example of labelled horizontal strokes on tablet YPM BC 014442.

2.2 Evaluation Metrics

Standard evaluation metrics include precision, sensitivity, and F-measure, calculated from true positive rate (TP), false positive rate (FP), and false
negative rate (FN). These are displayed in Table 2. From these, the following metrics can be calculated to quantitatively assess the efficacy of the
model.

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative ~ False Positive (FP) True Negative (TN)

Table 2. “TP” refers to the the proportion of cases that are correctly identified as positive by the model. “FP” marks the proportion of
cases that are incorrectly classified as positive by the model. “FN” reflects the proportion of cases that are incorrectly identified as
negative by the model. “TN” indicates the proportion of cases that are correctly identified as negative.

Accuracy or Precision (p): Precision measures how many of the total number of predicted positive cases are true positives. In other words, it is the
ratio of true positives to the total number of predicted positive cases, whether true or false.

TP

P=TpPp+FP

Sensitivity or Recall (s): Sensitivity measures how many of the true positive cases are correctly identified as positive by the model. In other words, it
is the ratio of true positives to the total number of positive cases, which includes both true positives and false negatives.

TP
' T TPIFN

F-measure (F1): The F1 measure combines precision and sensitivity into a single score that is commonly used as the final assessment of a model.
It is the harmonic mean of precision and sensitivity, calculated as two times the product of precision and sensitivity divided by their sum, resulting in
a number between 0 and 1 that can be viewed as a percentage of overall accuracy.

_ 2xpxs

pt+s
3 Results

Our goal was to test several types of object detectors to compare which one gives the best results for our task. According to theoretical comparisons
on public datasets, one-stage algorithms (here YOLOV5) should give faster but less accurate results compared to two-stage detectors (here Detecto
and R-CNN).

While testing with the YOLOv5 detector took only 1.189 seconds, the overall accuracy was just over 40%, which is not sufficient for practical
usability. The prediction using the R-CNN network took on average 45 seconds, but the results did not even reach the YOLOV5 level. We believe
that this was due to a lack of tuning of the hyperparameters and may be the subject of further experiments. Detecto, which was not as fast as
YOLOV5 but not as slow as R-CNN, achieved results that far outperformed both previous algorithms with its 90.5% sensitivity and 81.7% F-score.
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The reason behind this fact may be that Detecto is an optimised network that combines the principles of a two-stage detector with ResNet. Detailed
evaluation results are shown in Table 3, Figure 4, and Table 4.

Name TP FN FP P s F1 Fake of All Found Strokes
Detecto (Threshold 0.4) 669 70 229  744% @ 90.5% @ 81.7%  25.5%
YOLOVS5 (Threshold 0.2) 323 419 444  421%  435% 428% 57.8%
YOLOVS5 (Threshold 0.3) 256 486 305 45.6% 34.5% 39.2% 54.4%
YOLOV5 (Threshold 0.4) 196 546 190 50.7% 26.4% 34.7% 49.2%
R-CNN (Threshold 0.4) 191 595 941 16.9% 24.8% 19.9% 83.1%

Table 3. Evaluation results.

Evaluation results of object detection

algorithms

100.0%
90.0%
80.0%
70.0%
60.0%
50.0%
40.0%
30.0%
20.0%

10.0% I I
0.0%

Detecto YOLOvV5 YOLOvV5 YOLOv5 R-CNN

threshold 0.2 threshold 0.3 threshold 0.4

Ep Es ®mF mFakeofall found strokes

Figure 4. Evaluation results of object detection algorithms.




Prediction Network  Tablet
Detecto YPM BC 016773

YOLOvS  YPMBC 018686

R-CNN YPM BC 023856

Table 4. Prediction with respective detectors.

4 Discussion

The results of the machine learning model we developed (90.5% accuracy and 81.7% F-measure on Detecto) are very promising, particularly
considering the relatively small amount of labelled data. It shows that this previously untested approach, namely stroke identification from 2D
images, can be highly efficient for the vectorization of cuneiform tablets. While stroke identification has already been achieved in 3D models of
cuneiform-bearing objects (see Section 1.1), our approach shows the same is possible for 2D images which are far cheaper to produce.

Furthermore, our model is not period-dependent, meaning that some of the tablets we have chosen are over a thousand years apart (see Table 1).
But since the writing technique itself has not changed during that period, there were no significant differences in the model's ability to recognize the
strokes. The major attested difference between stroke types in Mesopotamia is Babylonian vs. Assyrian strokes, the former having longer bodies
(the tracing line), and the latter having bigger heads (the central point of the impression left on the clay tablet [Edzard 1980] [Labat 1988]. This,
however, does not seem to affect our model.

Since it was possible to effectively identify horizontal strokes, the same is possible for verticals and obliques. With this additional ability, it will be
possible to create a full vectorization of cuneiform tablets, which will need to be minimally corrected by an expert. These vectorizations are in effect
like hand-copies, which are a first step in assyriological research in interpreting cuneiform texts. It will be the first step in a human-in-the-loop
pipeline of cuneiform identification from image to digital text.

The subsequent step, identification of constellations of strokes as cuneiform signs, is under development by part of the authors [Gordin and
Romach 2022], currently using traditional hand-copies as input (see demo; see [Yamauchi et al. 2018] for previous work in this direction). Once the
signs are identified with their equivalent in Unicode cuneiform [Cohen et al. 2004], these can be transliterated and segmented into words using the
model Akkademia, previously developed by the assyriologists on our team and others [Gordin et al. 2020]. This can be further followed by machine
translation for the two main languages which used the cuneiform writing system, Sumerian and Akkadian. The Machine Translation and Automated
Analysis of Cuneiform Languages (MTAAC) project has begun developing models for translating Ur Il administrative texts (dated to the 21st century
BCE) [Punia et al. 2020]. Machine translation of Akkadian has also been achieved, focusing primarily on first millennium BCE texts from a variety of
genres, available through ORACC [Gutherz et al. 2023].

This pipeline can become a vital part of assyriological research by making accessible to experts and laypeople alike countless cuneiform texts that
have previously received less scholarly attention. However, it is important to note the limitations of this pipeline for assyriological research.
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The vector images we produce are not an accurate representation of the stroke, but rather a chosen schema. Although various schemas can be
selected, they are still one simplistic representation on how a stroke looks, which is then applied across the corpus. Therefore, for purposes of
scribal hand identification, as well as palaeography, they lack important aspects, such as ductus, or the formation of individual signs, and aspect (cf.
Latin equilibrium), or the visual impression created by the set hand of a scribe (i.e., the style of writing). This is the same, however, for manually
created hand-copies, since there are limitations to how these 3D objects can be captured in 2D, and some scholars tend to simplify what they see
on the tablet when creating hand-copies.

In addition, our results worked well on very high quality 2D images, curated by an expert [Wagensonner 2015]. Although anyone can take high-
quality images on their phone, ensuring that the signs and strokes are as legible as possible usually requires an expert knowledge of the cuneiform
script and the application of light sources. For this to efficiently work on a large scale, preferably only high-quality 2D images of cuneiform artifacts
should be used.

5 Towards Quantitative Epigraphy

The task of the epigrapher is to decipher the ancient writing surface — not merely to decipher the script or any linguistic element on its own, but
rather to produce a holistic decipherment of the inscription, its material aspects, and its contextual meaning. Therefore, it is challenging to translate
epigraphic tasks into one or more computational tasks. The current contribution is a step in this direction, by attempting to gouge out the atomized
elements of the script and its arrangement on the writing surface. This diplomatic approach to texts has a long history in medieval scholarly practice
[Duranti 1998] [Bertrand 2010], and it is a desideratum in order to piece together computational tasks for quantitative epigraphy. It is further a way to
bridge the differences across large numbers of ancient or little-known languages and scripts, since much of the literature surrounding their study
involves discussions on reconstructing the writing surface, traces, and their proper sequence in their Sitz im Leben.

The problem begins when one tries to harmonize tasks from the disciplines in the realm of computer science and the different research questions in
the humanities, which do not necessarily overlap. For an epigrapher, identifying and classifying an object in an image is not the end goal, as it might
be in computer science. Rather, it is a step in a process to reach historical understanding of a certain genre of text, writing tradition, or historical
period. Furthermore, the amounts of data that are available to train generative models like ChatGPT or the many image generator applications
made available in recent months, is beyond the scope of the digital data at the hands of the average epigrapher, historian, or digital humanist.

For that end, an interdisciplinary group of scholars dealing with ancient language processing and machine learning for ancient languages [Anderson
et al. 2023] [Sommerschield et al. 2023] has set out to better define and standardize data formats, tasks, and benchmarks. This initiative adds to the
growing movement of computational and quantitative studies in classics, biblical studies, ancient Near Eastern studies, and so on. The present
paper is aimed to contribute to the standardization of the epigrapher's computational tasks in ancient scripts. This paper also provides an example
of harmony and collaboration between computer scientists and humanists, as well as between computer science tasks and humanistic research
questions.

Furthermore, the methodology and techniques used in this study can be applied to other writing systems beyond cuneiform. The semi-automatic
vectorization approach can be adapted to identify and extract specific features of other ancient scripts. In ancient Chinese and Japanese for
example, one can try to find the common denominator made up of strokes, the components of each character. In classical Maya writing, one could
focus on the anthropomorphic elements of signs, like noses, eyes, ears, etc. The same can be said for other hieroglyphic scripts, like Egyptian or
Anatolian hieroglyphs.

Appendix
6.1 Training Convolutional Neural Networks

In the following section, we present the parameters necessary to replicate our results.

For all the models we employed, image augmentation methods were necessary to increase the number of available images for training. Grayscale
augmentations were applied with three samples per augmentation:

o Saturation applied to 50% of the images
o Saturation between -20% and +20%
o Exposure between -20% and +20%

6.1.1 Detecto Training

For Detecto training, the dataset was divided into three subsets. The training set contains 3,456 images, the validation set contains 330 images, and
the testing set contains 164 images. The training was performed on Google Collaboratory, and the layers from the fasterrcnn_resnet50_fpn_coco-
258fb6c6.pth model were unfrozen and re-trained. Fifty epochs were run, with three steps per epoch, and the validation loss dropped from 0.74 to
0.64 after all epochs, which took 302 minutes. After five epochs, the validation loss did not decrease, so we could have used early stopping for this
model.

6.1.2 YOLOVS5 Training

The YOLOVS5 architecture (with 232 layers) was trained in Google Colaboratory using CUDA on a Tesla T4 GPU with 40 multiprocessors and 15,109
MB of total memory. 100 epochs were executed with a batch of 16 images. The training loss (MAE) was reduced from 0.1 in the first epoch to 0.03
in the last epoch, as can be seen in Figure 5.
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Figure 5. Training set loss; source: Tensorboard

6.1.3 R-CNN Training

The whole implementation was done using the artificial intelligence lab at the Czech University of Life Sciences in Prague, because R-CNN has
high memory requirements and caused Google Collaboratory to crash (due to lack of memory). The environment settings as seen in Table 5 were

used:
IDE VS Code with Jupyter Extension
Kernel Python 3.8.12 within Anaconda
Al Framework Tensorflow 2.7.0 for GPU

Nvidia Configuration NVIDIA Quadro P400, cuda 11.2, cudnn 8.1

Table 5. R-CNN environment settings.

We have implemented region proposals with selective search using loU (Intersection over Union) configured as seen in Table 6:

Max Samples 55 (based on the maximum in training set)
Selective Search Iterate Results 2000 (proposed in original paper)

loU Object Limit 0.7

loU Background Limit 0.3

Table 6. R-CNN configuration.

The images used were 224 x 224 in size. We chose a VGG model pre-trained on the ImageNet dataset (input layer, thirteen convolutional layers,
five MaxPooling layers, Flatten, Dense). After encoding the label set once and splitting it into training (90%) and test sets (10%), we proceeded to
train with the configurations as seen in Table 7. Early stopping caused the training process to stop after thirty-nine epochs.

Error Function Binary cross-entropy
Optimizer Adam

Learning Rate 0.0001

Training Epochs 100

Steps in Epoch 10

Patience Epochs for Early Stopping 20

Table 7. R-CNN training hyperparameters.

6.2 Utilities for Further Research

In order to ease the process of data creation for the next steps of the project, we developed three image and label processing tools: an image
splitter, a vector visualization, and an image merger. These tools are available in the GitHub repository of our project.[g] The neural networks that we
used for object detection accept square input, and if it is not square, the image is reshaped to a standard input size. For large tablets, there would
be a significant loss of data, so it is necessary to slice large images into smaller, uniformly sized square images and train the network on these
slices. We chose a fixed image size of 416 x 416 (a multiple of eight, which is generally better for machine learning purposes [Chollet and
Pecinovsky 2019]).

While for the research presented in this article, we split the images before labelling, this slowed down the labelling process. Therefore, we
developed an image splitter and an image merger. Our proposed system works as follows: after labelling, a large image with a cuneiform-bearing
object is cut into squares with 50% overlap, so there is no data loss if strokes are on the edge of one square, since they are in the middle of the next
one. Then the neural network predicts where the horizontal strokes are in the image. The networks return bounding boxes which indicate the
location of the strokes. These bounding boxes are replaced by vectors of strokes in an empty image, and the strokes in the whole tablet are
reconstructed using merging. In this way we can create an automatic vectorization of horizontal (and other) strokes in the whole tablet (see Figure
6).
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Figure 6. Output image from the vector visualisation tool, tablet YPM BC 021234.

The main challenge in preparing the set of tools was dealing with splitting labels. When splitting the image into smaller squares, there is a cut-off 54
threshold for deciding whether the annotated strokes are still significant enough to be used in training. The threshold is based on a percentage that
determines what portion of the annotated strokes can be kept and what should be removed.

Acknowledgements

This research was funded by two grants. The project cuneiform analysis using Convolutional Neural Networks reg. no. 31/2021 was financed from 55
the OP RDE project Improvement in Quality of the Internal Grant Scheme at CZU, reg. no. CZ.02.2.69/0.0/0.0/19_073/0016944. The project no.
RA2000000010 was financed by the CULS — Ariel University cooperation grant.

Notes

[1] See Hamplova, A., Franc, D., Pavlicek, J., Romach, A., Gordin, S., Cejka, M., and Vesely, A. (2022) “adelajelinkova/cuneiform”, GitHub, available at:
https://github.com/adelajelinkova/cuneiform.

[2] See Ultralytics/Yolov5 (2021) “Yolov5”, GitHub, available at: https://github.com/ultralytics/yolov5.

[3] See Jocher, G., Chaurasia, A., and Qiu, J. (2023) “YOLO by Ultralytics (Version 8.0.0)", GitHub, available at: https://github.com/ultralytics/ultralytics.

[4] See Bi, A. (2020) alankbi/detecto “Build fully-functioning computer vision models with PyTorch”, GitHub, available at: https://github.com/alankbi/detecto.
[5] See Approboflowcom (2021) “Roboflow Dashboard”, GitHub, available at: https://app.roboflow.com/.

[6] See tzutalin/labellm (2021) “Labellmg”, Github, available at: https://github.com/tzutalin/labellmg.

[7] See Roboflow (2021) “Augmented Horizontal Dataset”, available at: https://app.roboflow.com/ds/t1bzmgivYH?key=gSadLELYkV.

[8] See https://github.com/adelajelinkova/cuneiform/tree/main/Utilities.
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